Cloud-based three-dimensional pattern analysis and classification of proximal humeral fractures – A feasibility study

dc.contributor.authorKalt, Denise
dc.contributor.authorGerber Popp, Ariane
dc.contributor.authorDegen, Markus
dc.contributor.authorBrodbeck, Dominique
dc.contributor.authorCoigny, Florian
dc.contributor.authorSuter, Thomas
dc.contributor.authorSchkommodau, Erik
dc.contributor.editorRodriguez y Baena, Ferdinando
dc.contributor.editorGiles, Joshua W.
dc.contributor.editorStindel, Eric
dc.date.accessioned2024-10-02T09:38:00Z
dc.date.available2024-10-02T09:38:00Z
dc.date.issued2022
dc.description.abstractFor the complex clinical issue of treatment decision for proximal humeral fractures, dedicated software based on three-dimensional (3D) computer tomography (CT) models would potentially allow for a more accurate fracture classification and help to plan the surgical strategy needed to reduce the fracture in the operating theatre. The aim of this study was to elaborate the feasibility of implementation of such software using state-of-the-art cloud technology to enable access to its functionalities in a distributed manner. Feasibility was studied by implementation of a prototype application, which was tested in a usability study with five biomedical engineers. Implementation of a cloud-based solution was feasible using state-of-the-art technology under application of a specific software architectural approach allowing to distribute computational load between client and server. Mean System Usability Scale (SUS) Score for the developed application was determined to be 63 (StDev 20.4). These results can be interpreted as a medium low usability with high standard deviation of the measured SUS score. We conclude that more test subjects should be included in future studies and the developed application should be evaluated with a representative user group such as orthopaedic shoulder surgeons in a clinical setting.
dc.event21st Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery (CAOS)
dc.event.end2022-06-11
dc.event.start2022-06-08
dc.identifier.doi10.29007/bprl
dc.identifier.issn2398-5305
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/47444
dc.identifier.urihttps://doi.org/10.26041/fhnw-10358
dc.language.isoen
dc.publisherEasyChair
dc.relation.ispartofProceedings of the 20th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery
dc.relation.ispartofseriesEPiC Series in Health Sciences
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialStockport
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleCloud-based three-dimensional pattern analysis and classification of proximal humeral fractures – A feasibility study
dc.type04B - Beitrag Konferenzschrift
dc.volume5
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryDiamond
fhnw.pagination25-30
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd2dbf999-16fa-4158-b8f1-ca31594a117d
relation.isAuthorOfPublication1ab7e74c-1a86-41dd-ae30-ae4c4c71c0c0
relation.isAuthorOfPublication25d5dae6-204b-4b35-b422-d856d3ba2796
relation.isAuthorOfPublicationdc969cae-4775-4db5-a3c7-f4e32a96f1f2
relation.isAuthorOfPublication.latestForDiscovery1ab7e74c-1a86-41dd-ae30-ae4c4c71c0c0
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
CAOS_2022_pages_25-30.pdf
Größe:
1.13 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: