Using Machine Learning to Support Continuous Ontology Development

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorRamezani, Maryam
dc.contributor.authorWitschel, Hans Friedrich
dc.contributor.authorBraun, Simone
dc.contributor.authorZacharias, Valentin
dc.date.accessioned2015-09-29T08:56:07Z
dc.date.available2017-10-27T10:55:20Z
dc.date.issued2010
dc.description.abstractThis paper presents novel algorithms to support the continuous development of ontologies; i.e. the development of ontologies during their use in social semantic bookmarking, semantic wiki or other social semantic applications. Our goal is to assist users in placing a newly added concept in a concept hierarchy. The proposed algorithm is evaluated using a data set from Wikipedia and provides good quality recommendation. These results point to novel possibilities to apply machine learning technologies to support social semantic applications.
dc.identifier.urihttp://hdl.handle.net/11654/5148
dc.identifier.urihttps://doi.org/10.26041/fhnw-2804
dc.language.isoenen_US
dc.relation.ispartofProceedings of 17th International Conference on Knowledge Engineering and Knowledge Management, EKAW 2010
dc.spatialLisbon
dc.titleUsing Machine Learning to Support Continuous Ontology Development
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.publicationStatePublished
relation.isAuthorOfPublication4f94a17c-9d05-433c-882f-68f062e0e6ae
relation.isAuthorOfPublication.latestForDiscovery4f94a17c-9d05-433c-882f-68f062e0e6ae
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
07 ekaw10.pdf
Größe:
145.67 KB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.94 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: