Using Machine Learning to Support Continuous Ontology Development
dc.accessRights | Anonymous | |
dc.audience | Science | |
dc.contributor.author | Ramezani, Maryam | |
dc.contributor.author | Witschel, Hans Friedrich | |
dc.contributor.author | Braun, Simone | |
dc.contributor.author | Zacharias, Valentin | |
dc.date.accessioned | 2015-09-29T08:56:07Z | |
dc.date.available | 2017-10-27T10:55:20Z | |
dc.date.issued | 2010 | |
dc.description.abstract | This paper presents novel algorithms to support the continuous development of ontologies; i.e. the development of ontologies during their use in social semantic bookmarking, semantic wiki or other social semantic applications. Our goal is to assist users in placing a newly added concept in a concept hierarchy. The proposed algorithm is evaluated using a data set from Wikipedia and provides good quality recommendation. These results point to novel possibilities to apply machine learning technologies to support social semantic applications. | |
dc.identifier.uri | http://hdl.handle.net/11654/5148 | |
dc.identifier.uri | https://doi.org/10.26041/fhnw-2804 | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Proceedings of 17th International Conference on Knowledge Engineering and Knowledge Management, EKAW 2010 | |
dc.spatial | Lisbon | |
dc.title | Using Machine Learning to Support Continuous Ontology Development | |
dc.type | 04B - Beitrag Konferenzschrift | |
dspace.entity.type | Publication | |
fhnw.InventedHere | No | |
fhnw.IsStudentsWork | no | |
fhnw.PublishedSwitzerland | No | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | 4f94a17c-9d05-433c-882f-68f062e0e6ae | |
relation.isAuthorOfPublication.latestForDiscovery | 4f94a17c-9d05-433c-882f-68f062e0e6ae |
Dateien
Originalbündel
1 - 1 von 1
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 2.94 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: