A novel one- and zero-dimensional model for turbulent jet ignition

dc.contributor.authorBardis, Konstantinos
dc.contributor.authorKyrtatos, Panagiotis
dc.contributor.authorBarro, Christophe
dc.contributor.authorDenisov, Alexey
dc.contributor.authorWright, Yuri Martin
dc.contributor.authorHerrmann, Kai
dc.contributor.authorBoulouchos, Konstantinos
dc.date.accessioned2025-07-01T06:46:45Z
dc.date.issued2021-01-11
dc.description.abstractTurbulent jet ignition (TJI) is a promising combustion technology for burning highly diluted air-fuel mixtures. Computationally efficient models to assess the effect of the operating conditions and design parameters on the ignition propensity and timing are of paramount importance for the development of combustion systems employing TJI. To this end, a one-dimensional (1-D) jet model, which is based on the solution of the section integrated mass and momentum conservation equations, is derived in the present study. The model is extended with two additional transport equations for the turbulence intensity and the ignition precursor/tracer, that marks the ignition event. One-dimensional transient flamelet calculations are performed to generate tables for the ignition precursor source term that account for the turbulence and chemistry interaction. Further simplification of the model is carried out to obtain a novel penetration correlation and a computationally inexpensive Lagrangian ignition model. The extended jet model is hierarchically validated using available literature data for non-reactive and reactive jets, as well as experiments conducted in a state-of-the-art optically accessible prechamber. The derived model is able to reproduce both flow-related quantities (velocity and turbulence profiles, jet penetration) and the ignition delay time under different variations. This study also illustrates how numerical simulations in canonical configurations (one-dimensional flamelet) can be used in practical applications of TJI.
dc.identifier.doi10.1007/s10494-020-00239-6
dc.identifier.issn1386-6184
dc.identifier.issn1573-1987
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/51799.2
dc.identifier.urihttps://doi.org/10.26041/fhnw-13041
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofFlow, Turbulence and Combustion
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc660 - Technische Chemie
dc.subject.ddc530 - Physik
dc.titleA novel one- and zero-dimensional model for turbulent jet ignition
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume107
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Technik und Umwelt FHNWde_CH
fhnw.affiliation.institutInstitut für Thermo- und Fluid-Engineeringde_CH
fhnw.openAccessCategoryHybrid
fhnw.pagination307-342
fhnw.publicationStatePublished
relation.isAuthorOfPublicationa9126497-808d-4e16-a262-b487cce0f979
relation.isAuthorOfPublication.latestForDiscoverya9126497-808d-4e16-a262-b487cce0f979
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
s10494-020-00239-6.pdf
Größe:
3.67 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung:

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2025-06-30 06:35:26
PDF ergänzen
2025-06-26 08:55:59
* Ausgewählte Version