Computationally driven discovery of SARS-CoV-2 Mpro inhibitors. From design to experimental validation

dc.accessRightsAnonymous*
dc.contributor.authorEl Khoury, Léa
dc.contributor.authorJing, Zhifeng
dc.contributor.authorCuzzolin, Alberto
dc.contributor.authorDeplano, Alessandro
dc.contributor.authorLoco, Daniele
dc.contributor.authorSattarov, Boris
dc.contributor.authorHédin, Florent
dc.contributor.authorHo, Chris
dc.contributor.authorEl Ahdab, Dina
dc.contributor.authorJaffrelot Inizan, Theo
dc.contributor.authorSturlese, Mattia
dc.contributor.authorSosic, Alice
dc.contributor.authorVolpiana, Martina
dc.contributor.authorLugato, Angela
dc.contributor.authorBarone, Marco
dc.contributor.authorGatto, Barbara
dc.contributor.authorMacchia, Maria Ludovica
dc.contributor.authorBellanda, Massimo
dc.contributor.authorBattistutta, Roberto
dc.contributor.authorSalata, Cristiano
dc.contributor.authorKondratov, Ivan
dc.contributor.authorIminov, Rustam
dc.contributor.authorKhairulin, Andrii
dc.contributor.authorMykhalonok, Yaroslav
dc.contributor.authorPochepko, Anton
dc.contributor.authorChashka-Ratushnyi, Volodymyr
dc.contributor.authorKos, Iaroslava
dc.contributor.authorMoro, Stefano
dc.contributor.authorMontes, Matthieu
dc.contributor.authorRen, Pengyu
dc.contributor.authorPonder, Jay W.
dc.contributor.authorLagardère, Louis
dc.contributor.authorPiquemal, Jean-Philip
dc.contributor.authorSabbadin, Davide
dc.contributor.authorWendeborn, Sebastian
dc.date.accessioned2023-02-09T14:25:40Z
dc.date.available2023-02-09T14:25:40Z
dc.date.issued2022-01-01
dc.description.abstractWe report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (Mpro) inhibitors whose potency ranges from mM for the initial non-covalent ligands to sub-μM for the final covalent compound (IC50 = 830 ± 50 nM). The project extensively relied on high-resolution all-atom molecular dynamics simulations and absolute binding free energy calculations performed using the polarizable AMOEBA force field. The study is complemented by extensive adaptive sampling simulations that are used to rationalize the different ligand binding poses through the explicit reconstruction of the ligand–protein conformation space. Machine learning predictions are also performed to predict selected compound properties. While simulations extensively use high performance computing to strongly reduce the time-to-solution, they were systematically coupled to nuclear magnetic resonance experiments to drive synthesis and for in vitro characterization of compounds. Such a study highlights the power of in silico strategies that rely on structure-based approaches for drug design and allows the protein conformational multiplicity problem to be addressed. The proposed fluorinated tetrahydroquinolines open routes for further optimization of Mpro inhibitors towards low nM affinities.en_US
dc.identifier.doi10.1039/D1SC05892D
dc.identifier.issn2041-6520
dc.identifier.issn2041-6539
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/34551
dc.identifier.urihttps://doi.org/10.26041/fhnw-4614
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.ispartofChemical Scienceen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaftenen_US
dc.titleComputationally driven discovery of SARS-CoV-2 Mpro inhibitors. From design to experimental validationen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume13en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Chemie und Bioanalytikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.pagination3674-3687en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication12da32cd-0bb7-4ee8-be2d-ced037e532bf
relation.isAuthorOfPublication931d1ba8-5284-4fea-9c44-3ebcc003d638
relation.isAuthorOfPublication.latestForDiscovery12da32cd-0bb7-4ee8-be2d-ced037e532bf
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
d1sc05892d.pdf
Größe:
1.97 MB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: