Robotic path planning by Q learning and a performance comparison with classical path finding algorithms

dc.contributor.authorChintala, Phalgun Chowdhary
dc.contributor.authorDornberger, Rolf
dc.contributor.authorHanne, Thomas
dc.date.accessioned2024-03-21T07:34:31Z
dc.date.available2024-03-21T07:34:31Z
dc.date.issued2022
dc.description.abstractQ Learning is a form of reinforcement learning for path finding problems that does not require a model of the environment. It allows the agent to explore the given environment and the learning is achieved by maximizing the rewards for the set of actions it takes. In the recent times, Q Learning approaches have proven to be successful in various applications ranging from navigation systems to video games. This paper proposes a Q learning based method that supports path planning for robots. The paper also discusses the choice of parameter values and suggests optimized parameters when using such a method. The performance of the most popular path finding algorithms such as A* and Dijkstra algorithm have been compared to the Q learning approach and were able to outperform Q learning with respect to computation time and resulting path length.
dc.identifier.doi10.18178/ijmerr.11.6.373-378
dc.identifier.issn2278-0149
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43301
dc.identifier.urihttps://doi.org/10.26041/fhnw-7266
dc.issue6
dc.language.isoen
dc.publisherEngineering and Technology
dc.relation.ispartofInternational Journal of Mechanical Engineering and Robotics Research
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc330 - Wirtschaft
dc.titleRobotic path planning by Q learning and a performance comparison with classical path finding algorithms
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume11
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination373-378
fhnw.publicationStatePublished
relation.isAuthorOfPublicationa035050b-dd49-4b29-8e30-892f15140e74
relation.isAuthorOfPublication64196f63-c326-4e10-935d-6776cc91354c
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication.latestForDiscoverya035050b-dd49-4b29-8e30-892f15140e74
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Robotic_path_planning_by_Q_learning_and_a_performance_comparison_with_classical_path_finding_algorithms.pdf
Größe:
1.1 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: