Widening the gap between measurement and modelling of secondary organic aerosol properties?

dc.contributor.authorGood, Nicholas
dc.contributor.authorTopping, D. O.
dc.contributor.authorDuplissy, Jonathan
dc.contributor.authorGysel, Martin
dc.contributor.authorMeyer, Nic K.
dc.contributor.authorMetzger, Axel
dc.contributor.authorTurner, S. F.
dc.contributor.authorBaltensperger, Urs
dc.contributor.authorRistovski, Zoran
dc.contributor.authorWeingartner, Ernest
dc.contributor.authorCoe, Hugh
dc.contributor.authorMcFiggans, Gordan
dc.date.accessioned2024-08-14T06:49:38Z
dc.date.available2024-08-14T06:49:38Z
dc.date.issued2010
dc.description.abstractThe link between measured sub-saturated hygroscopicity and cloud activation potential of secondary organic aerosol particles produced by the chamber photo-oxidation of α-pinene in the presence or absence of ammonium sulphate seed aerosol was investigated using two models of varying complexity. A simple single hygroscopicity parameter model and a more complex model (incorporating surface effects) were used to assess the detail required to predict the cloud condensation nucleus (CCN) activity from the sub-saturated water uptake. Sub-saturated water uptake measured by three hygroscopicity tandem differential mobility analyser (HTDMA) instruments was used to determine the water activity for use in the models. The predicted CCN activity was compared to the measured CCN activation potential using a continuous flow CCN counter. Reconciliation using the more complex model formulation with measured cloud activation could be achieved widely different assumed surface tension behavior of the growing droplet; this was entirely determined by the instrument used as the source of water activity data. This unreliable derivation of the water activity as a function of solute concentration from sub-saturated hygroscopicity data indicates a limitation in the use of such data in predicting cloud condensation nucleus behavior of particles with a significant organic fraction. Similarly, the ability of the simpler single parameter model to predict cloud activation behaviour was dependent on the instrument used to measure sub-saturated hygroscopicity and the relative humidity used to provide the model input. However, agreement was observed for inorganic salt solution particles, which were measured by all instruments in agreement with theory. The difference in HTDMA data from validated and extensively used instruments means that it cannot be stated with certainty the detail required to predict the CCN activity from sub-saturated hygroscopicity. In order to narrow the gap between measurements of hygroscopic growth and CCN activity the processes involved must be understood and the instrumentation extensively quality assured. It is impossible to say from the results presented here due to the differences in HTDMA data whether: i) Surface tension suppression occurs ii) Bulk to surface partitioning is important iii) The water activity coefficient changes significantly as a function of the solute concentration.
dc.identifier.doi10.5194/acp-10-2577-2010
dc.identifier.issn1680-7324
dc.identifier.issn1680-7316
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46650
dc.identifier.urihttps://doi.org/10.26041/fhnw-9706
dc.issue6
dc.language.isoen
dc.publisherCopernicus
dc.relation.ispartofAtmospheric Chemistry and Physics
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialGöttingen
dc.subject.ddc550 - Geowissenschaften
dc.titleWidening the gap between measurement and modelling of secondary organic aerosol properties?
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume10
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Technikde_CH
fhnw.affiliation.institutlnstitut für Sensorik und Elektronikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination2577–2593
fhnw.publicationStatePublished
relation.isAuthorOfPublication54997bb8-cf4a-4120-b0c7-f8e731e8eea1
relation.isAuthorOfPublication05dd9a19-7a24-4325-805a-2d121483b168
relation.isAuthorOfPublication.latestForDiscovery05dd9a19-7a24-4325-805a-2d121483b168
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
acp-10-2577-2010.pdf
Größe:
607.68 KB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: