Evaluating automated longitudinal tumor measurements for glioblastoma response assessment

dc.contributor.authorSuter, Yannick
dc.contributor.authorNotter, Michelle
dc.contributor.authorMeier, Raphael
dc.contributor.authorLoosli, Tina
dc.contributor.authorSchucht, Phillippe
dc.contributor.authorWiest, Roland
dc.contributor.authorReyes, Mauricio
dc.contributor.authorKnecht, Urspeter
dc.date.accessioned2026-01-07T15:50:47Z
dc.date.issued2023
dc.description.abstractAutomated tumor segmentation tools for glioblastoma show promising performance. To apply these tools for automated response assessment, longitudinal segmentation, and tumor measurement, consistency is critical. This study aimed to determine whether BraTumIA and HD-GLIO are suited for this task. We evaluated two segmentation tools with respect to automated response assessment on the single-center retrospective LUMIERE dataset with 80 patients and a total of 502 post-operative time points. Volumetry and automated bi-dimensional measurements were compared with expert measurements following the Response Assessment in Neuro-Oncology (RANO) guidelines. The longitudinal trend agreement between the expert and methods was evaluated, and the RANO progression thresholds were tested against the expert-derived time-to-progression (TTP). The TTP and overall survival (OS) correlation was used to check the progression thresholds. We evaluated the automated detection and influence of non-measurable lesions. The tumor volume trend agreement calculated between segmentation volumes and the expert bi-dimensional measurements was high (HD-GLIO: 81.1%, BraTumIA: 79.7%). BraTumIA achieved the closest match to the expert TTP using the recommended RANO progression threshold. HD-GLIO-derived tumor volumes reached the highest correlation between TTP and OS (0.55). Both tools failed at an accurate lesion count across time. Manual false-positive removal and restricting to a maximum number of measurable lesions had no beneficial effect. Expert supervision and manual corrections are still necessary when applying the tested automated segmentation tools for automated response assessment. The longitudinal consistency of current segmentation tools needs further improvement. Validation of volumetric and bi-dimensional progression thresholds with multi-center studies is required to move toward volumetry-based response assessment.
dc.identifier.doi10.3389/fradi.2023.1211859
dc.identifier.issn2673-8740
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54749
dc.identifier.urihttps://doi.org/10.26041/fhnw-14773
dc.language.isoen
dc.publisherFrontiers
dc.relation.ispartofFrontiers in Radiology
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectglioblastoma
dc.subjectsegmentation
dc.subjectautomated response assessment
dc.subjectRANO
dc.subjecttumor burden measurements
dc.subjectlongitudinal
dc.subject.ddc330 - Wirtschaft
dc.titleEvaluating automated longitudinal tumor measurements for glioblastoma response assessment
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume3
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublicatione6ca0243-9d54-472e-b042-80a3b998e3a4
relation.isAuthorOfPublicationdc8ebad9-bd96-4832-b35a-4c7265d9fdd5
relation.isAuthorOfPublicatione1ccb0e3-56ac-4841-9f8b-bb4268b06a84
relation.isAuthorOfPublication.latestForDiscoverye6ca0243-9d54-472e-b042-80a3b998e3a4
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
fradi-03-1211859.pdf
Größe:
14.9 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: