AI-based 3D detection of parked vehicles on a mobile mapping platform using edge computing

dc.contributor.authorMeyer, Jonas
dc.contributor.authorBlaser, Stefan
dc.contributor.authorNebiker, Stephan
dc.date.accessioned2024-08-12T12:09:45Z
dc.date.available2024-08-12T12:09:45Z
dc.date.issued2022
dc.description.abstractIn this paper we present an edge-based hardware and software framework for the 3D detection and mapping of parked vehicles on a mobile mapping platform for the use case of on-street parking statistics. First, we investigate different point cloud-based 3D object detection methods on our extremely dense and noisy depth maps obtained from low-cost RGB-D sensors to find a suitable object detector and determine the optimal preparation of our data. We then retrain the chosen object detector to detect all types of vehicles, rather than standard cars only. Finally, we design and develop a software framework integrating the newly trained object detector. By repeating the parking statistics of our previous work (Nebiker et al., 2021), our software is tested regarding the detection accuracy. With our edge-based framework, we achieve a precision and recall of 100% and 98% respectively on any parking configuration and vehicle type, outperforming all other known work on on-street parking statistics. Furthermore, our software is evaluated in terms of processing speed and volume of generated data. While the processing speed reaches only 1.9 frames per second due to limited computing resources, the amount of data generated is just 0.25 KB per frame.
dc.eventXXIVth ISPRS Congress
dc.event.end2022-06-11
dc.event.start2022-06-06
dc.identifier.doi10.5194/isprs-archives-xliii-b1-2022-437-2022
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46359
dc.identifier.urihttps://doi.org/10.26041/fhnw-9463
dc.language.isoen
dc.relation.ispartofThe international archives of the photogrammetry, remote sensing and spatial information sciences
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialNice
dc.subject3D vehicle detection
dc.subjectDeep neural networks
dc.subjectEdge computing
dc.subjectMobile mapping
dc.subjectRGB-D
dc.subjectRobot operating system
dc.subjectPoint clouds
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleAI-based 3D detection of parked vehicles on a mobile mapping platform using edge computing
dc.type04B - Beitrag Konferenzschrift
dc.volumeXLIII-B1-2022
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Architektur, Bau und Geomatik FHNWde_CH
fhnw.affiliation.institutInstitut Geomatikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination437-445
fhnw.publicationStatePublished
relation.isAuthorOfPublicationfbeb87dd-a384-4d52-bbd9-f84a6b5c48ed
relation.isAuthorOfPublication31874ac5-8697-4f30-bd52-b8650e323944
relation.isAuthorOfPublicationd4405bdc-e966-4962-9c93-9b06879a4a41
relation.isAuthorOfPublication.latestForDiscoveryfbeb87dd-a384-4d52-bbd9-f84a6b5c48ed
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
ai vehicles.pdf
Größe:
1.82 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: