Explainable AI for the olive oil industry

dc.contributor.authorSchmid, Christian
dc.contributor.authorLaurenzi, Emanuele
dc.contributor.authorMichelucci, Umberto
dc.contributor.authorVenturini, Francesca
dc.contributor.editorHinkelmann, Knut
dc.contributor.editorLópez-Pellicer, Francisco J.
dc.contributor.editorPolini, Andrea
dc.date.accessioned2025-02-13T14:06:23Z
dc.date.issued2023
dc.description.abstractUnderstanding Machine Learning results for the quality assessment of olive oil is hard for non-ML experts or olive oil producers. This paper introduces an approach for interpreting such results by combining techniques of image recognition with knowledge representation and reasoning. The Design Science Research strategy was followed for the creation of the approach. We analyzed the ML results of fluorescence spectroscopy and industry-specific characteristics in olive oil quality assessment. This resulted in the creation of a domain-specific knowledge graph enriched by object recognition and image classification results. The approach enables automatic reasoning and offers explanations about fluorescence image results and, more generally, about the olive oil quality. Producers can trace quality attributes and evaluation criteria, which synergizes computer vision and knowledge graph technologies. This approach provides an applicable foundation for industries relying on fluorescence spectroscopy and AI for quality assurance. Further research on image data processing and on end-to-end automation is necessary for the practical implementation of the approach.
dc.event22nd International Conference on Business Informatics Research
dc.identifier.doihttps://doi.org/10.1007/978-3-031-43126-5_12
dc.identifier.isbn978-3-031-43125-8
dc.identifier.isbn978-3-031-43126-5
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48432
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofProceedings of the 22nd International Conference on Business Informatics Research, BIR 2023
dc.relation.ispartofseriesLecture Notes in Business Information Processing
dc.spatialAscoli Piceno
dc.subject.ddc330 - Wirtschaft
dc.titleExplainable AI for the olive oil industry
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination158-171
fhnw.publicationStatePublished
fhnw.seriesNumber493
relation.isAuthorOfPublication8d89351d-7020-412b-bb08-f46c04394eb5
relation.isAuthorOfPublication4a2b6cad-6ed6-4355-a377-e408a177b079
relation.isAuthorOfPublication24d7a321-6ef9-4ab3-bdb0-6bded231b0b6
relation.isAuthorOfPublication.latestForDiscovery4a2b6cad-6ed6-4355-a377-e408a177b079
relation.isEditorOfPublication6898bec4-c71c-491e-b5f8-2b1cba9cfa00
relation.isEditorOfPublication.latestForDiscovery6898bec4-c71c-491e-b5f8-2b1cba9cfa00
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: