Knowledge Retention and Use with RAG-Enhanced Generative AI
| dc.contributor.author | Miliaev, Sergej | |
| dc.contributor.mentor | Hinkelmann, Knut | |
| dc.date.accessioned | 2025-12-15T13:39:39Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | The loss of tacit knowledge, constituting the majority of organizational knowledge, significantly impairs an organization’s ability to compete. Traditionally, research and practice have focused on preventing knowledge loss through human- and technology-centered strategies. Nowadays Generative Artificial Intelligence (GAI) is disrupting many industries and brings a great paradigm shift for knowledge management. In particular the Retrieval Augmented Generation (RAG) capability emerges as a promising solution to combine the world knowledge of Large Language Models (LLMs) with domain-specific knowledge of companies. | |
| dc.identifier.uri | https://irf.fhnw.ch/handle/11654/54856 | |
| dc.language.iso | en | |
| dc.publisher | Hochschule für Wirtschaft FHNW | |
| dc.spatial | Olten | |
| dc.subject.ddc | 330 - Wirtschaft | |
| dc.title | Knowledge Retention and Use with RAG-Enhanced Generative AI | |
| dc.type | 11 - Studentische Arbeit | |
| dspace.entity.type | Publication | |
| fhnw.InventedHere | Yes | |
| fhnw.StudentsWorkType | Master | |
| fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
| fhnw.affiliation.institut | Master of Science | de_CH |
| relation.isMentorOfPublication | 6898bec4-c71c-491e-b5f8-2b1cba9cfa00 | |
| relation.isMentorOfPublication.latestForDiscovery | 6898bec4-c71c-491e-b5f8-2b1cba9cfa00 |