Knowledge Retention and Use with RAG-Enhanced Generative AI

dc.contributor.authorMiliaev, Sergej
dc.contributor.mentorHinkelmann, Knut
dc.date.accessioned2025-12-15T13:39:39Z
dc.date.issued2025
dc.description.abstractThe loss of tacit knowledge, constituting the majority of organizational knowledge, significantly impairs an organization’s ability to compete. Traditionally, research and practice have focused on preventing knowledge loss through human- and technology-centered strategies. Nowadays Generative Artificial Intelligence (GAI) is disrupting many industries and brings a great paradigm shift for knowledge management. In particular the Retrieval Augmented Generation (RAG) capability emerges as a promising solution to combine the world knowledge of Large Language Models (LLMs) with domain-specific knowledge of companies.
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54856
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialOlten
dc.subject.ddc330 - Wirtschaft
dc.titleKnowledge Retention and Use with RAG-Enhanced Generative AI
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.StudentsWorkTypeMaster
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutMaster of Sciencede_CH
relation.isMentorOfPublication6898bec4-c71c-491e-b5f8-2b1cba9cfa00
relation.isMentorOfPublication.latestForDiscovery6898bec4-c71c-491e-b5f8-2b1cba9cfa00
Dateien