Expanding the potential of the solvent-assisted method to create bio-interfaces from amphiphilic block copolymers

dc.accessRightsAnonymous*
dc.contributor.authorDi Leone, Stefano
dc.contributor.authorVallapurackal, Jaicy
dc.contributor.authorYorulmaz Avsar, Saziye
dc.contributor.authorKyropolou, Myrto
dc.contributor.authorWard, Thomas
dc.contributor.authorPalivan, Cornelia
dc.contributor.authorMeier, Wolfgang
dc.date.accessioned2022-03-25T14:54:02Z
dc.date.available2022-03-25T14:54:02Z
dc.date.issued2021-06-09
dc.description.abstractArtificial membranes, as materials with biomimetic properties, can be applied in various fields, such as drug screening or bio-sensing. The solvent-assisted method (SA) represents a straightforward method to prepare lipid solid-supported membranes. It overcomes the main limitations of established membrane preparation methods, such as Langmuir–Blodgett (LB) or vesicle fusion. However, it has not yet been applied to create artificial membranes based on amphiphilic block copolymers, despite their enhanced mechanical stability compared to lipid-based membranes and bio-compatible properties. Here, we applied the SA method on different amphiphilic di- and triblock poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) copolymers and optimized the conditions to prepare artificial membranes on a solid support. The real-time membrane formation, the morphology, and the mechanical properties have been evaluated by a combination of atomic force microscopy and quartz crystal microbalance. Then, selected biomolecules including complementary DNA strands and an artificial deallylase metalloenzyme (ADAse) were incorporated into these membranes relying on the biotin–streptavidin technology. DNA strands served to establish the capability of these synthetic membranes to interact with biomolecules by preserving their correct conformation. The catalytic activity of the ADAse following its membrane anchoring induced the functionality of the biomimetic platform. Polymer membranes on solid support as prepared by the SA method open new opportunities for the creation of artificial membranes with tailored biomimetic properties and functionality.en_US
dc.identifier.doi10.1021/acs.biomac.1c00424
dc.identifier.issn1525-7797
dc.identifier.issn1526-4602
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33389
dc.issue7en_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofBiomacromoleculesen_US
dc.spatialWashingtonen_US
dc.titleExpanding the potential of the solvent-assisted method to create bio-interfaces from amphiphilic block copolymersen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume22en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Chemie und Bioanalytikde_CH
fhnw.openAccessCategoryCloseden_US
fhnw.pagination3005-3016en_US
fhnw.publicationStatePublisheden_US
Dateien