A multi-criteria assessment strategy for 3D printed porous polyetheretherketone (PEEK) patient-specific implants for orbital wall reconstruction

Lade...
Vorschaubild
Autor:innen
Sharma, Neha
Welker, Dennis
Aghlmandi, Soheila
Zeilhofer, Hans-Florian
Honigmann, Philipp
Seifert, Thomas
Thieringer, Florian
Autor:in (Körperschaft)
Publikationsdatum
13.08.2021
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Journal of Clinical Medicine
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
10
Ausgabe / Nummer
16
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
MDPI
Verlagsort / Veranstaltungsort
Basel
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Pure orbital blowout fractures occur within the confines of the internal orbital wall. Restoration of orbital form and volume is paramount to prevent functional and esthetic impairment. The anatomical peculiarity of the orbit has encouraged surgeons to develop implants with customized features to restore its architecture. This has resulted in worldwide clinical demand for patient-specific implants (PSIs) designed to fit precisely in the patient’s unique anatomy. Material extrusion or Fused filament fabrication (FFF) three-dimensional (3D) printing technology has enabled the fabrication of implant-grade polymers such as Polyetheretherketone (PEEK), paving the way for a more sophisticated generation of biomaterials. This study evaluates the FFF 3D printed PEEK orbital mesh customized implants with a metric considering the relevant design, biomechanical, and morphological parameters. The performance of the implants is studied as a function of varying thicknesses and porous design constructs through a finite element (FE) based computational model and a decision matrix based statistical approach. The maximum stress values achieved in our results predict the high durability of the implants, and the maximum deformation values were under one-tenth of a millimeter (mm) domain in all the implant profile configurations. The circular patterned implant (0.9 mm) had the best performance score. The study demonstrates that compounding multi-design computational analysis with 3D printing can be beneficial for the optimal restoration of the orbital floor.
Schlagwörter
Blow-out, Biocompatible materials, Computer-aided design, Finite element analysis, Orbit, Implant, Orbital fracture, Patient-specific modeling, Printing, Three-dimensional
Fachgebiet (DDC)
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
2077-0383
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
'http://creativecommons.org/licenses/by/3.0/us/'
Zitation
SHARMA, Neha, Dennis WELKER, Soheila AGHLMANDI, Michaela MAINTZ, Hans-Florian ZEILHOFER, Philipp HONIGMANN, Thomas SEIFERT und Florian THIERINGER, 2021. A multi-criteria assessment strategy for 3D printed porous polyetheretherketone (PEEK) patient-specific implants for orbital wall reconstruction. Journal of Clinical Medicine. 13 August 2021. Bd. 10, Nr. 16. DOI 10.3390/jcm10163563. Verfügbar unter: https://doi.org/10.26041/fhnw-4132