Signal detection and discrimination for medical devices using windowed state space filters

dc.contributor.authorWildhaber, Reto
dc.contributor.authorZalmai, Nour
dc.contributor.authorJacomet, Marcel
dc.contributor.authorLoeliger, Hans-Andrea
dc.date.accessioned2024-08-13T07:44:06Z
dc.date.available2024-08-13T07:44:06Z
dc.date.issued2017
dc.description.abstractWe introduce a model-based approach for computationally efficient signal detection and discrimination, which is relevant for biological signals. Due to its low computational complexity and low memory need, this approach is well-suited for low power designs, as required for medical devices and implants. We use linear state space models to gain recursive, efficient computation rules and obtain the model parameters by minimizing the squared error on discrete-time observations. Furthermore we combine multiple models of different time-scales to match superpositions of signals of variable length. To give immediate access to our method, we highlight the use in several practical examples on standard and on esophageal ECG signals. This method was adapted and improved as part of a research and development project for medical devices.
dc.event13th IASTED International Conference on Biomedical Engineering (BioMed)
dc.event.end2017-02-21
dc.event.start2017-02-20
dc.identifier.doi10.2316/p.2017.852-020
dc.identifier.isbn978-0-88986-990-5
dc.identifier.isbn978-1-5090-4908-0
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46840
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2017 13th IASTED International Conference on Biomedical Engineering (BioMed)
dc.spatialInnsbruck
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleSignal detection and discrimination for medical devices using windowed state space filters
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination125-133
fhnw.publicationStatePublished
relation.isAuthorOfPublication66894b38-407a-46f1-9e66-f573a64bf357
relation.isAuthorOfPublication.latestForDiscovery66894b38-407a-46f1-9e66-f573a64bf357
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: