Towards 3D bioprinted spinal cord organoids

dc.accessRightsAnonymous*
dc.contributor.authorHan, Yilin
dc.contributor.authorKing, Marianne
dc.contributor.authorTikhomirov, Evgenii
dc.contributor.authorBarasa, Povilas
dc.contributor.authorDos Santos Souza, Cleide
dc.contributor.authorLindh, Jonas
dc.contributor.authorBaltriukiene, Daiva
dc.contributor.authorFerraiuolo, Laura
dc.contributor.authorAzzouz, Mimoun
dc.contributor.authorGullo, Maurizio
dc.contributor.authorKozlova, Elena N.
dc.date.accessioned2023-02-16T12:55:19Z
dc.date.available2023-02-16T12:55:19Z
dc.date.issued2022-05-21
dc.description.abstractThree-dimensional (3D) cultures, so-called organoids, have emerged as an attractive tool for disease modeling and therapeutic innovations. Here, we aim to determine if boundary cap neural crest stem cells (BC) can survive and differentiate in gelatin-based 3D bioprinted bioink scaffolds in order to establish an enabling technology for the fabrication of spinal cord organoids on a chip. BC previously demonstrated the ability to support survival and differentiation of co-implanted or co-cultured cells and supported motor neuron survival in excitotoxically challenged spinal cord slice cultures. We tested different combinations of bioink and cross-linked material, analyzed the survival of BC on the surface and inside the scaffolds, and then tested if human iPSC-derived neural cells (motor neuron precursors and astrocytes) can be printed with the same protocol, which was developed for BC. We showed that this protocol is applicable for human cells. Neural differentiation was more prominent in the peripheral compared to central parts of the printed construct, presumably because of easier access to differentiation-promoting factors in the medium. These findings show that the gelatin-based and enzymatically cross-linked hydrogel is a suitable bioink for building a multicellular, bioprinted spinal cord organoid, but that further measures are still required to achieve uniform neural differentiation.en_US
dc.identifier.doi10.3390/ijms23105788
dc.identifier.issn1422-0067
dc.identifier.issn1661-6596
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/34630
dc.identifier.urihttps://doi.org/10.26041/fhnw-4644
dc.issue10en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofInternational Journal of Molecular Sciencesen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectCell survivalen_US
dc.subjectCell differentiationen_US
dc.subjectHydrogelen_US
dc.subjectBioprintingen_US
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaftenen_US
dc.titleTowards 3D bioprinted spinal cord organoidsen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume23en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.pagination1-13en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication08386994-fa70-495e-ba20-c8743db2495d
relation.isAuthorOfPublication.latestForDiscovery08386994-fa70-495e-ba20-c8743db2495d
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Towards 3D Bioprinted Spinal Cord Organoids - ijms-23-05788-v2.pdf
Größe:
2.02 MB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: