Redox-stat bioreactors for elucidating mobilisation mechanisms of trace elements: An example of As-contaminated mining soils

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorRajpert, Liwia
dc.contributor.authorSchäffer, Andreas
dc.contributor.authorLenz, Markus
dc.date.accessioned2018-11-26T09:53:19Z
dc.date.available2018-11-26T09:53:19Z
dc.date.issued2018
dc.description.abstractThe environmental fate of major (e.g. C, N, S, Fe and Mn) and trace (e.g. As, Cr, Sb, Se and U) elements is governed by microbially catalysed reduction-oxidation (redox) reactions. Mesocosms are routinely used to elucidate trace metal fate on the basis of correlations between biogeochemical proxies such as dissolved element concentrations, trace element speciation and dissolved organic matter. However, several redox processes may proceed simultaneously in natural soils and sediments (particularly, reductive Mn and Fe dissolution and metal/metalloid reduction), having a contrasting effect on element mobility. Here, a novel redox-stat (Rcont) bioreactor allowed precise control of the redox potential (159 ± 11 mV, ~ 2 months), suppressing redox reactions thermodynamically favoured at lower redox potential (i.e. reductive mobilisation of Fe and As). For a historically contaminated mining soil, As release could be attributed to desorption of arsenite [As(III)] and Mn reductive dissolution. By contrast, the control bioreactor (Rnat, with naturally developing redox potential) showed almost double As release (337 vs. 181 μg g−1) due to reductive dissolution of Fe (1363 μg g−1 Fe2+ released; no Fe2+ detected in Rcont) and microbial arsenate [As(V)] reduction (189 μg g−1 released vs. 46 μg g−1 As(III) in Rcont). A redox-stat bioreactor thus represents a versatile tool to study processes underlying mobilisation and sequestration of other trace elements as well.
dc.description.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097752/
dc.identifier.issn1432-0614
dc.identifier.issn0175-7598
dc.identifier.urihttp://hdl.handle.net/11654/26757
dc.identifier.urihttps://doi.org/10.26041/fhnw-1533
dc.issue17
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofApplied Microbiology and Biotechnologyen_US
dc.subjectArsenic remediation
dc.subjectRedox-stat bioreactor
dc.subjectTrace element fate
dc.titleRedox-stat bioreactors for elucidating mobilisation mechanisms of trace elements: An example of As-contaminated mining soils
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume102
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Ecopreneurshipde_CH
fhnw.publicationOnlineJa
fhnw.publicationStatePublished
relation.isAuthorOfPublicationc7b0a617-ef2c-48b2-919e-18d2c62cc929
relation.isAuthorOfPublication.latestForDiscoveryc7b0a617-ef2c-48b2-919e-18d2c62cc929
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Redox-stat bioreactors for elucidating mobilisation mechanisms of trace.pdf
Größe:
684.62 KB
Format:
Adobe Portable Document Format
Beschreibung: