Crystallographic, optical, and electronic properties of the Cs2AgBi1–xInxBr6 double perovskite. Understanding the fundamental photovoltaic efficiency challenges

dc.accessRightsAnonymous*
dc.contributor.authorLenz, Markus
dc.contributor.authorSchade, Laura
dc.contributor.authorMahesh, Suhas
dc.contributor.authorVolonakis, George
dc.contributor.authorZacharias, Marios
dc.contributor.authorWenger, Bernard
dc.contributor.authorSchmidt, Felix
dc.contributor.authorKesava, Sameer Vajjala
dc.contributor.authorPrabhakaran, Dharmalingam
dc.contributor.authorAbdi-Jalebi, Mojtaba
dc.contributor.authorLongo, Giulia
dc.contributor.authorRadaelli, Paolo
dc.contributor.authorSnaith, Henry
dc.contributor.authorGiustino, Feliciano
dc.date.accessioned2022-02-18T11:19:45Z
dc.date.available2022-02-18T11:19:45Z
dc.date.issued2021-02-19
dc.description.abstractWe present a crystallographic and optoelectronic study of the double perovskite Cs2AgBi1–xInxBr6. From structural characterization we determine that the indium cation shrinks the lattice and shifts the cubic-to-tetragonal phase transition point to lower temperatures. The absorption onset is shifted to shorter wavelengths upon increasing the indium content, leading to wider band gaps, which we rationalize through first-principles band structure calculations. Despite the unfavorable band gap shift, we observe an enhancement in the steady-state photoluminescence intensity, and n-i-p photovoltaic devices present short-circuit current greater than that of neat Cs2AgBiBr6 devices. In order to evaluate the prospects of this material as a solar absorber, we combine accurate absorption measurements with thermodynamic modeling and identify the fundamental limitations of this system. Provided radiative efficiency can be increased and the choice of charge extraction layers are specifically improved, this material could prove to be a useful wide band gap solar absorber.en_US
dc.identifier.doi10.1021/acsenergylett.0c02524
dc.identifier.issn2380-8195
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33313
dc.issue3en_US
dc.language.isoen_USen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofACS Energy Lettersen_US
dc.spatialWashingtonen_US
dc.subjectabsorptionen_US
dc.subjectindiumen_US
dc.subjectelectrical conductivityen_US
dc.subjectperovskitesen_US
dc.subjectmaterialsen_US
dc.titleCrystallographic, optical, and electronic properties of the Cs2AgBi1–xInxBr6 double perovskite. Understanding the fundamental photovoltaic efficiency challengesen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume6en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Ecopreneurshipde_CH
fhnw.openAccessCategoryCloseden_US
fhnw.pagination1073-1081en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublicationc7b0a617-ef2c-48b2-919e-18d2c62cc929
relation.isAuthorOfPublicationd7032d3c-9128-49a6-9b4d-a11cbb18292a
relation.isAuthorOfPublication.latestForDiscoveryc7b0a617-ef2c-48b2-919e-18d2c62cc929
Dateien