Visual feature engineering

dc.contributor.authorBleisch, Susanne
dc.date.accessioned2024-07-15T12:20:41Z
dc.date.available2024-07-15T12:20:41Z
dc.date.issued2018
dc.description.abstractFeature engineering is a key concept in machine learning describing the process of defining the characteristics of an observed phenomenon in a way that makes it usable by an algorithm (e.g., [3]). This process often includes domain knowledge to make the features, as well as the results of the algorithms, meaningful in the respective application area. In data analysis generally, including visual data analysis, the obtained results or insights are often dependent on the employed analysis method as well as the parameters and their imensions used. A simple but well-known example is the modifiable area unit problem [5]. Depending on the size and form of the spatial units chosen to aggregate the data, different visualizations and potentially interpretations of the information may result. In some cases, the chosen methods or algorithms and their parameters can be argued to be the right ones to support a specific analysis task, in other cases a sensitivity analysis may be helpful in determining the optimal values. Additionally, visual analytics, allowing tight integration of the interaction with the methods and parameters and the visualizations, has the potential to support the evaluation of the right or sensible analysis method and its parameters as well as to provide provenance information for the finally employed approach.
dc.description.urihttps://viz.icaci.org/GVIZ2018/wp-content/uploads/2018/08/GVIZ2018_paper2_final.pdf
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46447
dc.identifier.urihttps://doi.org/10.26041/fhnw-9547
dc.language.isoen
dc.publisherInstitut Geomatik, Hochschule für Architektur, Bau und Geomatik FHNW
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/
dc.spatialMuttenz
dc.subjectVisual analytics
dc.subjectVisualization
dc.subjectFeature engineering
dc.subjectAlogrithms
dc.subjectParameters
dc.subjectPersonalization
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleVisual feature engineering
dc.type05 - Forschungs- oder Arbeitsbericht
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Architektur, Bau und Geomatik FHNWde_CH
fhnw.affiliation.institutInstitut Geomatikde_CH
fhnw.publicationStatePublished
relation.isAuthorOfPublicationa3106286-7b72-4b07-803a-47748de34385
relation.isAuthorOfPublication.latestForDiscoverya3106286-7b72-4b07-803a-47748de34385
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
GVIZ2018_paper2_final.pdf
Größe:
448.99 KB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: