Anti-Inflammatory Activity of Cyanobacterial Serine Protease Inhibitors Aeruginosin 828A and Cyanopeptolin 1020 in Human Hepatoma Cell Line Huh7 and Effects in Zebrafish (Danio rerio)
Loading...
Authors
Author (Corporation)
Publication date
14.07.2016
Typ of student thesis
Course of study
Collections
Type
01A - Journal article
Editors
Editor (Corporation)
Supervisor
Parent work
Toxins
Special issue
DOI of the original publication
Link
Series
Series number
Volume
8
Issue / Number
7
Pages / Duration
219
Patent number
Publisher / Publishing institution
MDPI
Place of publication / Event location
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
Intensive growth of cyanobacteria in freshwater promoted by eutrophication can lead to release of toxic secondary metabolites that may harm aquatic organisms and humans. The serine protease inhibitor aeruginosin 828A was isolated from a microcystin-deficient Planktothrix strain. We assessed potential molecular effects of aeruginosin 828A in comparison to another cyanobacterial serine protease inhibitor, cyanopeptolin 1020, in human hepatoma cell line Huh7, in zebrafish embryos and liver organ cultures. Aeruginosin 828A and cyanopeptolin 1020 promoted anti-inflammatory activity, as indicated by transcriptional down-regulation of interleukin 8 and tumor necrosis factor α in stimulated cells at concentrations of 50 and 100 µmol·L−1 aeruginosin 828A, and 100 µmol·L−1 cyanopeptolin 1020. Aeruginosin 828A induced the expression of CYP1A in Huh7 cells but did not affect enzyme activity. Furthermore, hatched zebrafish embryos and zebrafish liver organ cultures were exposed to aeruginosin 828A. The transcriptional responses were compared to those of cyanopeptolin 1020 and microcystin-LR. Aeruginosin 828A had only minimal effects on endoplasmic reticulum stress. In comparison to cyanopeptolin 1020 our data indicate that transcriptional effects of aeruginosin 828A in zebrafish are very minor. The data further demonstrate that pathways that are influenced by microcystin-LR are not affected by aeruginosin 828A.
Keywords
cytochrome P450, transcription analysis, zebrafish, human hepatoma cells, anti-inflammatory, microcystin, cyanopeptolin, aeruginosin
Subject (DDC)
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
2072-6651
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Published
Review
Peer review of the complete publication
Open access category
License
Citation
Faltermann, S., Hutter, S., Christen, V., Hettich, T., & Fent, K. (2016). Anti-Inflammatory Activity of Cyanobacterial Serine Protease Inhibitors Aeruginosin 828A and Cyanopeptolin 1020 in Human Hepatoma Cell Line Huh7 and Effects in Zebrafish (Danio rerio). Toxins, 8(7), 219. https://doi.org/10.3390/toxins8070219