Deep Learning for Anomaly Detection
Lade...
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2021
Typ der Arbeit
Master
Studiengang
Sammlung
Typ
11 - Studentische Arbeit
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Hochschule für Wirtschaft FHNW
Verlagsort / Veranstaltungsort
Olten
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
In the age of Big Data, data analysis becomes ever more important. To analyse the data, many researchers nowadays focus on artificial intelligence. Artificial intelligence does not rely on labour-intensive feature engineering like the traditional machine learning or statistical models. Therefore, the use of AI, such as neural networks, can save a lot of development time. Two widely used architectures of neural networks are the Convolutional Neural Networks and the Recurrent Neural Networks. A Convolutional Neural Network is generally used when a task is related to image recognition, whereas Recurrent Neural Networks are used for the prediction of time series. Recently an approach was proposed to analyse time series data with Convolutional Neural Networks. The strengths and weaknesses of this approach, however, are currently unknown and are further investigated in this paper. To examine the usefulness, the practically relevant use case of anomaly detection was chosen. Within the scope of this work, different approaches on anomaly detection, that employ convolutional or recurrent neural networks are investigated. Since the architectures should be compared regarding their performance, ways to evaluate the performances are assessed. After elaborating the methodology applied in this work, it is described how the hyper-parameters were determined to make the models comparable. As a main part of this work, three experiments on different datasets are conducted. The datasets used, vary in complexity and contain different types of anomalies. The first experiment was carried out on a synthetic dataset with synthetic anomalies. In the second experiment a real-world dataset with synthetic anomalies was used. Finally, an official benchmark dataset was employed in the third experiment. On the obtained results the two architectures are assessed according to their usefulness for anomaly detection. Further, it is classified how helpful deep learning is for forecasting time series and detecting anomalies. At last, the insights of this work are presented together with suggestions for future research.
Schlagwörter
Fachgebiet (DDC)
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Open Access-Status
Lizenz
Zitation
Saner, K. (2021). Deep Learning for Anomaly Detection [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/48603