Influence of microarchitecture on osteoconduction and mechanics of porous titanium scaffolds generated by selective laser melting
Vorschaubild nicht verfügbar
Autor:innen
Rüegg, Jasmine
Fleischmann, Thea
Ghayor, Chafik
Weber, Franz E.
Autor:in (Körperschaft)
Publikationsdatum
2016
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
3D Printing and Additive Manufacturing
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
3
Ausgabe / Nummer
3
Seiten / Dauer
143-151
Patentnummer
Verlag / Herausgebende Institution
Mary Ann Liebert
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Bone regeneration is naturally based on bone forming cells, osteoinduction by diverse growth factors, and osteoconduction. The latter one used as term in this study is the ingrowth of bone in 3D structures, which leads to an optimal case in creeping substitution of the scaffold by newly formed bone. Autologous bone is still the gold standard for bone substitutes. In most cases, newly developed bone substitutes consist of calcium phosphate, since hydroxyapatite is the main component of bone and mimics cancellous bone in microstructure. In this study, we wanted to elucidate the optimal microarchitecture for osteoconduction and determine compression strength and Young’s Modulus of the selected architectures. Selective laser melting of titanium was used as tool to generate diverse architectures in a repetitive and precise way. To link 3D scaffold architecture to biological readouts, bone ingrowth, bone to implant contact, and defect bridging of noncritical-sized defects in the calvarial bone of rabbits were determined. In this series, 5 different microarchitectures were tested with pore sizes ranging from 700 to 1300 lm and constrictions between 290 and 700 lm. To our surprise, all microstructures showed the same biological response of excellent osteoconduction. However, the mechanical yield strength of these structures differed by the factor of three and reached up to three times the strength of cancellous bone at a porosity of 72.3–88.4%. These results suggest that the microarchitecture of bone substitutes can be optimized toward mechanical strength in a wide range of constrictions and pore sizes without having a negative influence on osteoconduction.
Schlagwörter
bone substitute, microarchitecture, open-porous, osteoconduction, scaffolds, titanium
Fachgebiet (DDC)
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
2329-7670
2329-7662
2329-7662
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
publication.page.publication.state.Pre-printinprinting
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Lizenz
Zitation
DE WILD, Michael, Simon ZIMMERMANN, Jasmine RÜEGG, Ralf SCHUMACHER, Thea FLEISCHMANN, Chafik GHAYOR und Franz E. WEBER, 2016. Influence of microarchitecture on osteoconduction and mechanics of porous titanium scaffolds generated by selective laser melting. 3D Printing and Additive Manufacturing. 2016. Bd. 3, Nr. 3, S. 143–151. DOI 10.1089/3dp.2016.0004. Verfügbar unter: http://hdl.handle.net/11654/23401