Combining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds

dc.contributor.authorBormann, Therese
dc.contributor.authorSchulz, Georg
dc.contributor.authorDeyhle, Hans
dc.contributor.authorBeckmann, Felix
dc.contributor.authorde Wild, Michael
dc.contributor.authorKüffer, Jürg
dc.contributor.authorMünch, Christoph
dc.contributor.authorHoffmann, Waldemar
dc.contributor.authorMüller, Bert
dc.date.accessioned2024-05-15T08:35:59Z
dc.date.available2024-05-15T08:35:59Z
dc.date.issued2014-02
dc.description.abstractAppropriate mechanical stimulation of bony tissue enhances osseointegration of load-bearing implants. Uniaxial compression of porous implants locally results in tensile and compressive strains. Their experimental determination is the objective of this study. Selective laser melting is applied to produce open-porous NiTi scaffolds of cubic units. To measure displacement and strain fields within the compressed scaffold, the authors took advantage of synchrotron radiation-based micro computed tomography during temperature increase and non-rigid three-dimensional data registration. Uniaxial scaffold compression of 6% led to local compressive and tensile strains of up to 15%. The experiments validate modeling by means of the finite element method. Increasing the temperature during the tomography experiment from 15 to 37 °C at a rate of 4 K h−1, one can locally identify the phase transition from martensite to austenite. It starts at ∼24 °C on the scaffolds bottom, proceeds up towards the top and terminates at ∼34 °C on the periphery of the scaffold. The results allow not only design optimization of the scaffold architecture, but also estimation of maximal displacements before cracks are initiated and of optimized mechanical stimuli around porous metallic load-bearing implants within the physiological temperature range.
dc.identifier.doi10.1016/j.actbio.2013.11.007
dc.identifier.issn1742-7061
dc.identifier.issn1878-7568
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/45805
dc.issue2
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofActa Biomaterialia
dc.subjectNiTi
dc.subjectScaffold Compression
dc.subjectVariable Temperature Tomography
dc.subjectDigital Volume Correlation
dc.subjectThree-Dimensional Displacement Field
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleCombining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume10
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination1024-1034
fhnw.publicationStatePublished
relation.isAuthorOfPublication135938a9-969d-4ea3-9bb2-7ff1d77554cb
relation.isAuthorOfPublication0c944d14-31e2-452a-ad67-7f6924b669a3
relation.isAuthorOfPublication.latestForDiscovery135938a9-969d-4ea3-9bb2-7ff1d77554cb
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: