Online signature verification based on string edit distance
dc.contributor.author | Riesen, Kaspar | |
dc.contributor.author | Schmidt, Roman | |
dc.date.accessioned | 2024-03-20T08:11:55Z | |
dc.date.available | 2024-03-20T08:11:55Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance. | |
dc.identifier.doi | 10.1007/s10032-019-00316-1 | |
dc.identifier.issn | 1433-2825 | |
dc.identifier.issn | 1433-2833 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/42431 | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.ispartof | International Journal on Document Analysis and Recognition | |
dc.subject.ddc | 330 - Wirtschaft | |
dc.title | Online signature verification based on string edit distance | |
dc.type | 01A - Beitrag in wissenschaftlicher Zeitschrift | |
dc.volume | 22 | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
fhnw.openAccessCategory | Closed | |
fhnw.pagination | 41-54 | |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | d761e073-1612-4d22-8521-65c01c19f97a | |
relation.isAuthorOfPublication.latestForDiscovery | d761e073-1612-4d22-8521-65c01c19f97a |
Dateien
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 1.36 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: