Coplanar embedding of multiple 3D cell models in hydrogel towards high-throughput micro-histology

Type
01A - Journal article
Editors
Editor (Corporation)
Supervisor
Parent work
Scientific Reports
Special issue
DOI of the original publication
Link
Series
Series number
Volume
12
Issue / Number
Pages / Duration
9991
Patent number
Publisher / Publishing institution
Nature
Place of publication / Event location
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
Standardised and high-throughput methods have been developed for the production and experimental handling of some 3D in vitro models. However, adapted analytical tools are still missing for scientists and researchers to fully exploit the potential of complex cellular models in pre-clinical drug testing and precision medicine. Histology is the established, cost-effective and gold standard method for structural and functional tissue analysis. However, standard histological processes are challenging and costly to apply to 3D cell models, as their small size often leads to poor alignment of samples, which lowers analysis throughput. This body of work proposes a new approach: HistoBrick facilitates histological processing of spheroids and organoids by enabling gel embedding of 3D cell models with precise coplanar alignment, parallel to the sectioning plane, thus minimising the loss of sample material. HistoBrick’s features are compatible with automation standards, potentially allowing automated sample transfer from a multi-well plate to the gel device. Moreover, HistoBrick’s technology was validated by demonstrating the alignment of HepG2 cultured spheroids measuring 150–200 µm in diameter with a height precision of ± 80 µm. HistoBrick allows up to 96 samples to be studied across minimal sections, paving the way towards high-throughput micro-histology.
Keywords
Project
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
2045-2322
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Published
Review
Peer review of the complete publication
Open access category
Gold
License
'https://creativecommons.org/licenses/by/4.0/'
Citation
Heub, S., Navaee, F., Migliozzi, D., Ledroit, D., Boder-Pasche, S., Goldowsky, J., Vuille-Dit-Bille, E., Hofer, J., Gaiser, C., Revol, V., Suter-Dick, L., & Weder, G. (2022). Coplanar embedding of multiple 3D cell models in hydrogel towards high-throughput micro-histology. Scientific Reports, 12, 9991. https://doi.org/10.1038/s41598-022-13987-4