The Role of Fission in Neutron Star Mergers and Its Impact on the r-Process Peaks

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorEichler, Marius
dc.contributor.authorArcones, Almudena
dc.contributor.authorKelic, Alexandra
dc.contributor.authorKorobkin, Oleg
dc.contributor.authorLanganke, Karlheinz
dc.contributor.authorMarketin, Tomislav
dc.contributor.authorMartinez-Pinedo, Gabriel
dc.contributor.authorPanov, Igor
dc.contributor.authorRauscher, Thomas
dc.contributor.authorRosswog, Stephan
dc.contributor.authorWinteler, Christian
dc.contributor.authorZinner, Nikolaj
dc.contributor.authorThielemann, Friedrich-Karl
dc.date.accessioned2015-12-04T13:46:08Z
dc.date.available2015-12-04T13:46:08Z
dc.date.issued2015-07-15
dc.description.abstractComparing observational abundance features with nucleosynthesis predictions of stellar evolution or explosion simulations can scrutinize two aspects: (a) the conditions in the astrophysical production site and (b) the quality of the nuclear physics input utilized. We test the abundance features of r-process nucleosynthesis calculations for the dynamical ejecta of neutron star merger simulations based on three different nuclear mass models: The Finite Range Droplet Model (FRDM), the (quenched version of the) Extended Thomas Fermi Model with Strutinsky Integral (ETFSI-Q), and the Hartree-Fock-Bogoliubov (HFB) mass model. We make use of corresponding fission barrier heights and compare the impact of four different fission fragment distribution models on the final r-process abundance distribution. In particular, we explore the abundance distribution in the second r-process peak and the rare-earth sub-peak as a function of mass models and fission fragment distributions, as well as the origin of a shift in the third r-process peak position. The latter has been noticed in a number of merger nucleosynthesis predictions. We show that the shift occurs during the r-process freeze-out when neutron captures and β-decays compete and an (n,γ)-(γ,n) equilibrium is not maintained anymore. During this phase neutrons originate mainly from fission of material above A = 240. We also investigate the role of β-decay half-lives from recent theoretical advances, which lead either to a smaller amount of fissioning nuclei during freeze-out or a faster (and thus earlier) release of fission neutrons, which can (partially) prevent this shift and has an impact on the second and rare-earth peak as well.
dc.identifier.doi10.1088/0004-637X/808/1/30
dc.identifier.issn1538-4357
dc.identifier.issn0004-637X
dc.identifier.urihttp://hdl.handle.net/11654/11586
dc.identifier.urihttps://doi.org/10.26041/fhnw-167
dc.issue1
dc.language.isoenen_US
dc.publisherThe American Astronomical Societyen_US
dc.relation.ispartofThe Astrophysical Journalen_US
dc.spatialWashingtonen_US
dc.subjectnucleosynthesis
dc.subjectstars:neutron
dc.subjectr-process
dc.subject.ddc530 - Physikde
dc.titleThe Role of Fission in Neutron Star Mergers and Its Impact on the r-Process Peaks
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume808
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Architektur, Bau und Geomatik FHNWde_CH
fhnw.affiliation.institutInstitut Nachhaltigkeit und Energie am Baude_CH
fhnw.pagination13-43
fhnw.publicationStatePublished
relation.isAuthorOfPublication29ba451a-ff1e-4003-9182-aa7ca8ed1a46
relation.isAuthorOfPublication.latestForDiscovery29ba451a-ff1e-4003-9182-aa7ca8ed1a46
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
1411.0974v2.pdf
Größe:
843.92 KB
Format:
Adobe Portable Document Format
Beschreibung:
The Role of Fission in Neutron Star Mergers and its Impact on the r-Process Peaks

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.94 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: