A hybrid intelligent approach combining machine learning and a knowledge graph to support academic journal publishers addressing the Reviewer Assignment Problem (RAP)
dc.contributor.author | Rordorf, Dietrich Hans-Paul | |
dc.contributor.author | Käser, Josua | |
dc.contributor.author | Crego Corot, Alfredo Etienne | |
dc.contributor.author | Laurenzi, Emanuele | |
dc.contributor.editor | Martin, Andreas | |
dc.contributor.editor | Fill, Hans-Georg | |
dc.contributor.editor | Gerber, Aurona | |
dc.contributor.editor | Hinkelmann, Knut | |
dc.contributor.editor | Lenat, Doug | |
dc.contributor.editor | Stolle, Reinhard | |
dc.contributor.editor | Harmelen, Frank | |
dc.date.accessioned | 2025-02-13T14:08:19Z | |
dc.date.issued | 2023 | |
dc.description.abstract | This paper presents a hybrid intelligent approach that combines natural language processing (NLP) and knowledge engineering to address the Reviewer Assignment Problem (RAP) in scientific peer-review. The approach uses NLP techniques to match a new document with subject experts, and it employs a knowledge graph to identify conflicts of interest (COIs) between the authors of a document and potential reviewers. The approach detects three types of COIs: direct co-authorship, second-level coauthorship, and collaborators from the same institutions. Further, it uses semantic text similarity (STS) matching for peer-reviewing of documents in journals, where potential reviewers are screened from large literature databases. The research approach follows the Design Science Research methodology, where a prototypical system is designed based on the requirements elicited from both the literature and from primary data collection conducted in a publishing house. The approach is evaluated by implementing real-world use cases in the working prototype and by conducting a focus group with potential users, i.e., editors. © 2023 CEUR-WS. All rights reserved. | |
dc.description.uri | https://ceur-ws.org/Vol-3433/paper15.pdf | |
dc.event | AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023) | |
dc.identifier.doi | ||
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/48434 | |
dc.identifier.uri | https://doi.org/10.26041/fhnw-11149 | |
dc.language.iso | en | |
dc.publisher | Sun SITE, Informatik V, RWTH Aachen | |
dc.relation.ispartof | Proceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.spatial | Aachen | |
dc.subject.ddc | 330 - Wirtschaft | |
dc.title | A hybrid intelligent approach combining machine learning and a knowledge graph to support academic journal publishers addressing the Reviewer Assignment Problem (RAP) | |
dc.type | 04B - Beitrag Konferenzschrift | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
fhnw.openAccessCategory | Diamond | |
fhnw.pagination | 1-19 | |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | ddd26cbf-d8de-492a-b6e4-e8eb44e4d6ed | |
relation.isAuthorOfPublication | 58524ce6-a17f-48a8-8cc4-6f6977f534fc | |
relation.isAuthorOfPublication | 8457b4a9-06eb-450a-9d69-d494fba960df | |
relation.isAuthorOfPublication | 4a2b6cad-6ed6-4355-a377-e408a177b079 | |
relation.isAuthorOfPublication.latestForDiscovery | 4a2b6cad-6ed6-4355-a377-e408a177b079 | |
relation.isEditorOfPublication | 6a3865e7-85dc-41b5-afe3-c834c56fab4e | |
relation.isEditorOfPublication | 6898bec4-c71c-491e-b5f8-2b1cba9cfa00 | |
relation.isEditorOfPublication.latestForDiscovery | 6a3865e7-85dc-41b5-afe3-c834c56fab4e |
Dateien
Originalbündel
1 - 1 von 1
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 2.66 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: