A hybrid intelligent approach combining machine learning and a knowledge graph to support academic journal publishers addressing the Reviewer Assignment Problem (RAP)

dc.contributor.authorRordorf, Dietrich Hans-Paul
dc.contributor.authorKäser, Josua
dc.contributor.authorCrego Corot, Alfredo Etienne
dc.contributor.authorLaurenzi, Emanuele
dc.contributor.editorMartin, Andreas
dc.contributor.editorFill, Hans-Georg
dc.contributor.editorGerber, Aurona
dc.contributor.editorHinkelmann, Knut
dc.contributor.editorLenat, Doug
dc.contributor.editorStolle, Reinhard
dc.contributor.editorHarmelen, Frank
dc.date.accessioned2025-02-13T14:08:19Z
dc.date.issued2023
dc.description.abstractThis paper presents a hybrid intelligent approach that combines natural language processing (NLP) and knowledge engineering to address the Reviewer Assignment Problem (RAP) in scientific peer-review. The approach uses NLP techniques to match a new document with subject experts, and it employs a knowledge graph to identify conflicts of interest (COIs) between the authors of a document and potential reviewers. The approach detects three types of COIs: direct co-authorship, second-level coauthorship, and collaborators from the same institutions. Further, it uses semantic text similarity (STS) matching for peer-reviewing of documents in journals, where potential reviewers are screened from large literature databases. The research approach follows the Design Science Research methodology, where a prototypical system is designed based on the requirements elicited from both the literature and from primary data collection conducted in a publishing house. The approach is evaluated by implementing real-world use cases in the working prototype and by conducting a focus group with potential users, i.e., editors. © 2023 CEUR-WS. All rights reserved.
dc.description.urihttps://ceur-ws.org/Vol-3433/paper15.pdf
dc.eventAAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023)
dc.identifier.doi
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48434
dc.identifier.urihttps://doi.org/10.26041/fhnw-11149
dc.language.isoen
dc.publisherSun SITE, Informatik V, RWTH Aachen
dc.relation.ispartofProceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialAachen
dc.subject.ddc330 - Wirtschaft
dc.titleA hybrid intelligent approach combining machine learning and a knowledge graph to support academic journal publishers addressing the Reviewer Assignment Problem (RAP)
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryDiamond
fhnw.pagination1-19
fhnw.publicationStatePublished
relation.isAuthorOfPublicationddd26cbf-d8de-492a-b6e4-e8eb44e4d6ed
relation.isAuthorOfPublication58524ce6-a17f-48a8-8cc4-6f6977f534fc
relation.isAuthorOfPublication8457b4a9-06eb-450a-9d69-d494fba960df
relation.isAuthorOfPublication4a2b6cad-6ed6-4355-a377-e408a177b079
relation.isAuthorOfPublication.latestForDiscovery4a2b6cad-6ed6-4355-a377-e408a177b079
relation.isEditorOfPublication6a3865e7-85dc-41b5-afe3-c834c56fab4e
relation.isEditorOfPublication6898bec4-c71c-491e-b5f8-2b1cba9cfa00
relation.isEditorOfPublication.latestForDiscovery6a3865e7-85dc-41b5-afe3-c834c56fab4e
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
paper15.pdf
Größe:
1.34 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: