Estimating Graph Edit Distance Using Lower and Upper Bounds of Bipartite Approximations

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorRiesen, Kaspar
dc.contributor.authorFischer, Andreas
dc.contributor.authorBunke, Horst
dc.date.accessioned2015-10-08T09:31:19Z
dc.date.available2015-10-08T09:31:19Z
dc.date.issued2015-03-02
dc.description.abstractThe concept of graph edit distance (GED) is still one of the most flexible and powerful graph matching approaches available. Yet, exact computation of GED can be solved in exponential time complexity only. A previously introduced approximation framework reduces the computation of GED to an instance of a linear sum assignment problem. Major benefit of this reduction is that an optimal assignment of nodes (including local structures) can be computed in polynomial time. Given this assignment an approximate value of GED can be immediately derived. Yet, this approach considers local — rather than the global — structural properties of the graphs only, and thus GED derived from the optimal node assignment generally overestimates the true edit distance. Recently, it has been shown how the existing approximation framework can be exploited to additionally derive a lower bound of the exact edit distance without any additional computations. In this paper we make use of regression analysis in order to predict the exact GED using these two bounds. In an experimental evaluation on diverse graph data sets we empirically verify the gain of distance accuracy of the estimated GEDs compared to both bounds.
dc.identifier.issn0218-0014
dc.identifier.issn1793-6381
dc.identifier.urihttp://hdl.handle.net/11654/10147
dc.issue2
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.relation.ispartofInternational Journal of Pattern Recognition and Artificial Intelligenceen_US
dc.subjectgraph edit distanceen_US
dc.subjectbipartite graph matchingen_US
dc.subjectpredicting exact graph edit distanceen_US
dc.titleEstimating Graph Edit Distance Using Lower and Upper Bounds of Bipartite Approximations
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume29
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.pagination1-27
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.94 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: