Extraction of Table Information from Annual Reports Supported by CNN and Transformer-Based Approaches
| dc.contributor.author | Lüthy, Elian | |
| dc.contributor.mentor | Hanne, Thomas | |
| dc.date.accessioned | 2025-12-15T13:39:32Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Financial tables often feature multi-level headers, grouped categories, and implicit semantics that stretch the limits of current extraction pipelines. Existing literature largely focuses on synthetic or academic datasets, leaving a methodological gap between model development and real-world application. This thesis evaluates TFLOP, a state-of-the-art table extraction model, on a curated set of native PDF annual reports from Swiss companies. | |
| dc.identifier.uri | https://irf.fhnw.ch/handle/11654/54852 | |
| dc.language.iso | en | |
| dc.publisher | Hochschule für Wirtschaft FHNW | |
| dc.spatial | Olten | |
| dc.subject.ddc | 330 - Wirtschaft | |
| dc.title | Extraction of Table Information from Annual Reports Supported by CNN and Transformer-Based Approaches | |
| dc.type | 11 - Studentische Arbeit | |
| dspace.entity.type | Publication | |
| fhnw.InventedHere | Yes | |
| fhnw.StudentsWorkType | Master | |
| fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
| fhnw.affiliation.institut | Master of Science | de_CH |
| relation.isMentorOfPublication | 35d8348b-4dae-448a-af2a-4c5a4504da04 | |
| relation.isMentorOfPublication.latestForDiscovery | 35d8348b-4dae-448a-af2a-4c5a4504da04 |