Extraction of Table Information from Annual Reports Supported by CNN and Transformer-Based Approaches

dc.contributor.authorLüthy, Elian
dc.contributor.mentorHanne, Thomas
dc.date.accessioned2025-12-15T13:39:32Z
dc.date.issued2025
dc.description.abstractFinancial tables often feature multi-level headers, grouped categories, and implicit semantics that stretch the limits of current extraction pipelines. Existing literature largely focuses on synthetic or academic datasets, leaving a methodological gap between model development and real-world application. This thesis evaluates TFLOP, a state-of-the-art table extraction model, on a curated set of native PDF annual reports from Swiss companies.
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54852
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialOlten
dc.subject.ddc330 - Wirtschaft
dc.titleExtraction of Table Information from Annual Reports Supported by CNN and Transformer-Based Approaches
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.StudentsWorkTypeMaster
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutMaster of Sciencede_CH
relation.isMentorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isMentorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien