Virtual bartender: a dialog system combining data-driven and knowledge-based recommendation

dc.contributor.authorHinkelmann, Knut
dc.contributor.authorBlaser, Monika
dc.contributor.authorFaust, Oliver
dc.contributor.authorHorst, Alexander
dc.contributor.authorMehli, Carlo
dc.contributor.editorMartin, Andreas
dc.contributor.editorHinkelmann, Knut
dc.contributor.editorGerber, Aurona
dc.contributor.editorLenat, Doug
dc.contributor.editorvan Harmelen, Frank
dc.contributor.editorClark, Peter
dc.date.accessioned2024-04-16T09:48:55Z
dc.date.available2024-04-16T09:48:55Z
dc.date.issued2019
dc.description.abstractThis research is about combination of data-driven and knowledge-based recommendations The research is made in an application scenario for whisky recommendation, where a guest chats with a recommender system. Preferences about taste are difficult to express and the knowledge about taste is tacit and thus can hardly be represented and used adequately. People or not aware of how to describe flavors in a standardized way and how to do a justified choice. This is because knowledge about taste is mainly tacit knowledge. To deal with this knowledge, data-driven recommendation is adequate. On the other hand, in particular experienced customers use knowledge about distilleries, locations and the distillery process to express their preferences and want to have arguments for the recommended products. This shows that a combination of data-driven and knowledge-based recommendations is appropriate in areas where tacit knowledge and explicit knowledge are available.
dc.description.urihttps://ceur-ws.org/Vol-2350/
dc.eventAAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)
dc.event.end2019-03-27
dc.event.start2019-03-25
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42638
dc.identifier.urihttps://doi.org/10.26041/fhnw-6603
dc.language.isoen
dc.relation.ispartofProceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialPalo Alto
dc.subject.ddc330 - Wirtschaft
dc.titleVirtual bartender: a dialog system combining data-driven and knowledge-based recommendation
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryDiamond
fhnw.publicationStatePublished
relation.isAuthorOfPublication6898bec4-c71c-491e-b5f8-2b1cba9cfa00
relation.isAuthorOfPublication.latestForDiscovery6898bec4-c71c-491e-b5f8-2b1cba9cfa00
relation.isEditorOfPublication6a3865e7-85dc-41b5-afe3-c834c56fab4e
relation.isEditorOfPublication6898bec4-c71c-491e-b5f8-2b1cba9cfa00
relation.isEditorOfPublication.latestForDiscovery6a3865e7-85dc-41b5-afe3-c834c56fab4e
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Hinkelmann_Blaser_Faust_Horst_Mehli_2019_Virtual_Bartender.pdf
Größe:
1.12 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: