Influence of statistical approaches on Probabilistic Sweet Spots computation in Deep Brain Stimulation for severe Essential Tremor

dc.contributor.authorBucciarelli, Vittoria
dc.contributor.authorVogel, Dorian
dc.contributor.authorNordin, Teresa
dc.contributor.authorStawiski, Marc
dc.contributor.authorCoste, Jérôme
dc.contributor.authorLemaire, Jean-Jacques
dc.contributor.authorGuzman, Raphael
dc.contributor.authorHemm-Ode, Simone
dc.date.accessioned2025-10-27T12:35:40Z
dc.date.issued2025
dc.description.abstractDeep Brain Stimulation (DBS) is an established therapy for movement and neuropsychiatric disorders. Identifying brain regions (Probabilistic Sweet Spots, PSS) linked with the greatest symptom improvement is crucial for refining pre-operative targeting and post-operative programming. Probabilistic stimulation mapping is a powerful data-driven tool to delineate these regions. However, the chosen statistical methods can influence the identified PSS. A comprehensive evaluation of their impact is lacking in DBS research. The present study compares the PSS generated with four voxel-wise statistical approaches — t-test, Wilcoxon test, Linear Mixed Model, and Bayesian t-test — with the aim of assessing their influence on computed results on the same dataset. Intra-operative stimulation test data of 23 Essential Tremor (ET) patients was used to run patient-specific electric field simulations and to generate PSS in a group-specific anatomical template space. The PSS for the different statistical tests were first compared in terms of size and topography. Then, their correlation with clinical improvement was calculated in a leave-one-out cross-validation scheme and PSS consistency across datasets with different compositions was assessed. Our findings emphasize the impact of statistical test selection on both the anatomical location and volume of the extracted PSS, highlighting the importance of careful methodological choices in future DBS mapping studies. The Bayesian t-test and a voxel-wise application of nonparametric permutation testing, introduced for the first time in DBS research, showed promising results in identifying PSS representative of improvement and exhibited robustness to variations in the dataset.
dc.identifier.doi10.1016/j.nicl.2025.103820
dc.identifier.issn2213-1582
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/53025
dc.identifier.urihttps://doi.org/10.26041/fhnw-13801
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofNeuroImage: Clinical
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectDeep brain stimulation (DBS)
dc.subjectEssential tremor
dc.subjectProbabilistic mapping
dc.subjectProbabilistic sweet spot
dc.subjectStatistical methods
dc.subject.ddc610 - Medizin und Gesundheit
dc.titleInfluence of statistical approaches on Probabilistic Sweet Spots computation in Deep Brain Stimulation for severe Essential Tremor
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume47
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination103820
fhnw.publicationStatePublished
relation.isAuthorOfPublication98041bb5-1129-4b3b-a2b6-4c732aace7f9
relation.isAuthorOfPublication8b7dc0ce-2f98-456c-8812-bc5836ea98b5
relation.isAuthorOfPublication751f4aee-97bb-4592-91f2-6e3e4623de25
relation.isAuthorOfPublication8b7dc0ce-2f98-456c-8812-bc5836ea98b5
relation.isAuthorOfPublication.latestForDiscovery98041bb5-1129-4b3b-a2b6-4c732aace7f9
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
1-s2.0-S2213158225000907-main.pdf
Größe:
6.87 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: