Towards Radiomics-based automated disease progression assessment for glioblastoma patients
| dc.contributor.author | Suter, Yannick | |
| dc.contributor.author | Schuhmacher, Flurina | |
| dc.contributor.author | Ermis, Ekin | |
| dc.contributor.author | Knecht, Urspeter | |
| dc.contributor.author | Schucht, Philippe | |
| dc.contributor.author | Wiest, Roland | |
| dc.contributor.author | Reyes, Mauricio | |
| dc.contributor.editor | Baid, Ujjwal | |
| dc.contributor.editor | Dorent, Reuben | |
| dc.contributor.editor | Malec, Sylwia | |
| dc.contributor.editor | Pytlarz, Monika | |
| dc.contributor.editor | Su, Ruisheng | |
| dc.contributor.editor | Wijethilake, Navodini | |
| dc.contributor.editor | Bakas, Spyridon | |
| dc.contributor.editor | Crimi, Alessandro | |
| dc.date.accessioned | 2026-01-08T08:40:56Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | Glioblastoma is a highly infiltrative brain tumor with fast progression and poor prognosis for patients. Due to the rapid growth, close treatment response monitoring is key. In this study, we benchmark different machine learning approaches for automated progression classiu0002fication with various radiomic feature sets extracted from longitudinal magnetic resonance imaging and classifiers. Our experiments show difu0002ferences in robustness and performance and offer insights into common failure modes. The best ROC-AUC was achieved with a random forest classifier without feature selection (0.748), and the best F1 score was at 0.792 for an XGBoost classifier where features of the current time point and the change from the reference time point were provided. Anau0002lyzing misclassifications shows different behavior for statistical machine learning classifiers and Residual Neural Networks. | |
| dc.event | The 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023) | |
| dc.event.end | 2023-10-12 | |
| dc.event.start | 2023-10-08 | |
| dc.identifier.doi | 10.1007/978-3-031-76160-7_4 | |
| dc.identifier.isbn | 978-3-031-76159-1 | |
| dc.identifier.isbn | 978-3-031-76160-7 | |
| dc.identifier.uri | https://irf.fhnw.ch/handle/11654/54728 | |
| dc.language.iso | en | |
| dc.publisher | Springer | |
| dc.relation.ispartof | Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 9th International Workshop, BrainLes 2023, and 3rd International Workshop, SWITCH 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8 and 12, 2023, Revised Selected Papers | |
| dc.relation.ispartofseries | Lecture Notes in Computer Science | |
| dc.spatial | Vancouver | |
| dc.subject.ddc | 330 - Wirtschaft | |
| dc.title | Towards Radiomics-based automated disease progression assessment for glioblastoma patients | |
| dc.type | 04B - Beitrag Konferenzschrift | |
| dspace.entity.type | Publication | |
| fhnw.InventedHere | No | |
| fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
| fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
| fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
| fhnw.openAccessCategory | Closed | |
| fhnw.pagination | 36-47 | |
| fhnw.publicationState | Published | |
| fhnw.seriesNumber | 14668 | |
| relation.isAuthorOfPublication | e6ca0243-9d54-472e-b042-80a3b998e3a4 | |
| relation.isAuthorOfPublication.latestForDiscovery | e6ca0243-9d54-472e-b042-80a3b998e3a4 |
Dateien
Lizenzbündel
1 - 1 von 1
Lade...
- Name:
- license.txt
- Größe:
- 2.66 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: