Towards Radiomics-based automated disease progression assessment for glioblastoma patients

dc.contributor.authorSuter, Yannick
dc.contributor.authorSchuhmacher, Flurina
dc.contributor.authorErmis, Ekin
dc.contributor.authorKnecht, Urspeter
dc.contributor.authorSchucht, Philippe
dc.contributor.authorWiest, Roland
dc.contributor.authorReyes, Mauricio
dc.contributor.editorBaid, Ujjwal
dc.contributor.editorDorent, Reuben
dc.contributor.editorMalec, Sylwia
dc.contributor.editorPytlarz, Monika
dc.contributor.editorSu, Ruisheng
dc.contributor.editorWijethilake, Navodini
dc.contributor.editorBakas, Spyridon
dc.contributor.editorCrimi, Alessandro
dc.date.accessioned2026-01-08T08:40:56Z
dc.date.issued2024
dc.description.abstractGlioblastoma is a highly infiltrative brain tumor with fast progression and poor prognosis for patients. Due to the rapid growth, close treatment response monitoring is key. In this study, we benchmark different machine learning approaches for automated progression classiu0002fication with various radiomic feature sets extracted from longitudinal magnetic resonance imaging and classifiers. Our experiments show difu0002ferences in robustness and performance and offer insights into common failure modes. The best ROC-AUC was achieved with a random forest classifier without feature selection (0.748), and the best F1 score was at 0.792 for an XGBoost classifier where features of the current time point and the change from the reference time point were provided. Anau0002lyzing misclassifications shows different behavior for statistical machine learning classifiers and Residual Neural Networks.
dc.eventThe 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023)
dc.event.end2023-10-12
dc.event.start2023-10-08
dc.identifier.doi10.1007/978-3-031-76160-7_4
dc.identifier.isbn978-3-031-76159-1
dc.identifier.isbn978-3-031-76160-7
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54728
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. 9th International Workshop, BrainLes 2023, and 3rd International Workshop, SWITCH 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8 and 12, 2023, Revised Selected Papers
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.spatialVancouver
dc.subject.ddc330 - Wirtschaft
dc.titleTowards Radiomics-based automated disease progression assessment for glioblastoma patients
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination36-47
fhnw.publicationStatePublished
fhnw.seriesNumber14668
relation.isAuthorOfPublicatione6ca0243-9d54-472e-b042-80a3b998e3a4
relation.isAuthorOfPublication.latestForDiscoverye6ca0243-9d54-472e-b042-80a3b998e3a4
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: