Microbial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomes

dc.accessRightsAnonymous*
dc.contributor.authorCorvini, Philippe
dc.contributor.authorQi, Mengyuan
dc.contributor.authorLiang, Bin
dc.contributor.authorMa, Xiaodan
dc.contributor.authorYan, Lei
dc.contributor.authorDong, Wenchen
dc.contributor.authorKong, Deyong
dc.contributor.authorZhang, Liying
dc.contributor.authorZhu, Haizhen
dc.contributor.authorGao, Shu-Hong
dc.contributor.authorJiang, Jiandong
dc.contributor.authorLiu, Shuan-Jiang
dc.contributor.authorWang, Aijie
dc.date.accessioned2022-02-18T09:26:10Z
dc.date.available2022-02-18T09:26:10Z
dc.date.issued2021-03-02
dc.description.abstractMicrobial communities are believed to outperform monocultures in the complete catabolism of organic pollutants via reduced metabolic burden and increased robustness to environmental challenges; however, the interaction mechanism in functional microbiomes remains poorly understood. Here, three functionally differentiated activated sludge microbiomes (S1: complete catabolism of sulfamethoxazole (SMX); S2: complete catabolism of the phenyl part of SMX ([phenyl]-SMX) with stable accumulation of its heterocyclic product 3-amino-5-methylisoxazole (3A5MI); A: complete catabolism of 3A5MI rather than [phenyl]-SMX) were enriched. Combining time-series cultivation-independent microbial community analysis, DNA-stable isotope probing, molecular ecological network analysis, and cultivation-dependent function verification, we identified key players involved in the SMX degradation process. Paenarthrobacter and Nocardioides were primary degraders for the initial cleavage of the sulfonamide functional group (-C-S-N- bond) and 3A5MI degradation, respectively. Complete catabolism of SMX was achieved by their cross-feeding. The co-culture of Nocardioides, Acidovorax, and Sphingobium demonstrated that the nondegraders Acidovorax and Sphingobium were involved in the enhancement of 3A5MI degradation. Moreover, we unraveled the internal labor division patterns and connections among the active members centered on the two primary degraders. Overall, the proposed methodology is promisingly applicable and would help generate mechanistic, predictive, and operational understanding of the collaborative biodegradation of various contaminants. This study provides useful information for synthetic activated sludge microbiomes with optimized environmental functions.en_US
dc.identifier.doi10.1021/acs.est.0c06687
dc.identifier.issn1520-5851
dc.identifier.issn0013-936X
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33310
dc.issue5en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofEnvironmental Science & Technologyen_US
dc.spatialWashingtonen_US
dc.subjectAnti-Bacterial Agentsen_US
dc.subjectBiodegradationen_US
dc.subjectEnvironmentalen_US
dc.subjectmicrobiotaen_US
dc.subjectsewageen_US
dc.subjectSulfamethoxazoleen_US
dc.subjectwater pollutantsen_US
dc.titleMicrobial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomesen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume55en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Ecopreneurshipde_CH
fhnw.openAccessCategoryCloseden_US
fhnw.pagination3270-3282en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublicationb70a3a4f-d739-4ef3-84c8-cab8e28c05c7
relation.isAuthorOfPublication.latestForDiscoveryb70a3a4f-d739-4ef3-84c8-cab8e28c05c7
Dateien