Optimizing staff rosters for emergency shifts for doctors
dc.accessRights | Anonymous | |
dc.audience | Sonstige | |
dc.contributor.author | Frey, Lukas | |
dc.contributor.author | Hanne, Thomas | |
dc.contributor.author | Dornberger, Rolf | |
dc.date.accessioned | 2015-10-05T15:42:16Z | |
dc.date.available | 2015-10-05T15:42:16Z | |
dc.date.issued | 2009-06-28T00:00:00Z | |
dc.description.abstract | The creation of staff rosters for emergency shifts for doctors is a complex task. To construct good rosters, many restrictions (e.g. holydays and workload) have to be taken into account. These restrictions have been mathematically specified for a concrete case in order to solve the problem afterwards with a straightforward genetic algorithm. Thereby the main focus lays on two different mutation methods and the combination of them. The results of this procedure will be discussed in this work. | |
dc.event | CEC 2009 - IEEE Congress on Evolutionary Computation (Proceedings) | |
dc.identifier.isbn | 978-1-4244-2958-5 | |
dc.identifier.uri | http://hdl.handle.net/11654/9586 | |
dc.language.iso | en_UK | |
dc.publisher | IEEE | |
dc.spatial | Trondheim | |
dc.subject | genetic algorithm | |
dc.subject | mutation methods | |
dc.subject | staff rosters | |
dc.subject.ddc | 330 - Wirtschaft | |
dc.subject.ddc | 005 - Computer Programmierung, Programme und Daten | |
dc.title | Optimizing staff rosters for emergency shifts for doctors | |
dc.type | 04B - Beitrag Konferenzschrift | |
dspace.entity.type | Publication | |
fhnw.InventedHere | unbekannt | |
fhnw.ReviewType | No peer review | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | 823af11f-eb47-4008-9791-570024b49385 | |
relation.isAuthorOfPublication | 35d8348b-4dae-448a-af2a-4c5a4504da04 | |
relation.isAuthorOfPublication | 64196f63-c326-4e10-935d-6776cc91354c | |
relation.isAuthorOfPublication.latestForDiscovery | 823af11f-eb47-4008-9791-570024b49385 |