New hybrid techniques for business recommender systems

dc.contributor.authorPande, Charuta
dc.contributor.authorWitschel, Hans Friedrich
dc.contributor.authorMartin, Andreas
dc.date.accessioned2024-03-18T08:08:38Z
dc.date.available2024-03-18T08:08:38Z
dc.date.issued2022
dc.description.abstractBesides the typical applications of recommender systems in B2C scenarios such as movie or shopping platforms, there is a rising interest in transforming the human-driven advice provided, e.g., in consultancy via the use of recommender systems. We explore the special characteristics of such knowledge-based B2B services and propose a process that allows incorporating recommender systems into them. We suggest and compare several recommender techniques that allow incorporating the necessary contextual knowledge (e.g., company demographics). These techniques are evaluated in isolation on a test set of business intelligence consultancy cases. We then identify the respective strengths of the different techniques and propose a new hybridisation strategy to combine these strengths. Our results show that the hybridisation leads to substantial performance improvement over the individual methods.
dc.identifier.doi10.3390/app12104804
dc.identifier.issn2076-3417
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43327
dc.identifier.urihttps://doi.org/10.26041/fhnw-7292
dc.issue10
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofApplied Sciences
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialBasel
dc.subject.ddc330 - Wirtschaft
dc.titleNew hybrid techniques for business recommender systems
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume12
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublication6fa75258-21bd-4090-98cb-b2217a6f234d
relation.isAuthorOfPublication4f94a17c-9d05-433c-882f-68f062e0e6ae
relation.isAuthorOfPublication6a3865e7-85dc-41b5-afe3-c834c56fab4e
relation.isAuthorOfPublication.latestForDiscovery6fa75258-21bd-4090-98cb-b2217a6f234d
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
New_hybrid_techniques_for_business_recommender_systems.pdf
Größe:
507.81 KB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: