Enhancing precision in large-scale data analysis: an innovative robust imputation algorithm for managing outliers and missing values

Vorschaubild
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2023
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Mathematics
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
11
Ausgabe / Nummer
12
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
MDPI
Verlagsort / Veranstaltungsort
Basel
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Navigating the intricate world of data analytics, one method has emerged as a key tool in confronting missing data: multiple imputation. Its strength is further fortified by its powerful variant, robust imputation, which enhances the precision and reliability of its results. In the challenging landscape of data analysis, non-robust methods can be swayed by a few extreme outliers, leading to skewed imputations and biased estimates. This can apply to both representative outliers – those true yet unusual values of your population – and non-representative outliers, which are mere measurement errors. Detecting these outliers in large or high-dimensional data sets often becomes as complex as unraveling a Gordian knot. The solution? Turn to robust imputation methods. Robust (imputation) methods effectively manage outliers and exhibit remarkable resistance to their influence, providing a more reliable approach to dealing with missing data. Moreover, these robust methods offer flexibility, accommodating even if the imputation model used is not a perfect fit. They are akin to a well-designed buffer system, absorbing slight deviations without compromising overall stability. In the latest advancement of statistical methodology, a new robust imputation algorithm has been introduced. This innovative solution addresses three significant challenges with robustness. It utilizes robust bootstrapping to manage model uncertainty during the imputation of a random sample; it incorporates robust fitting to reinforce accuracy; and it takes into account imputation uncertainty in a resilient manner. Furthermore, any complex regression or classification model for any variable with missing data can be run through the algorithm. With this new algorithm, we move one step closer to optimizing the accuracy and reliability of handling missing data. Using a realistic data set and a simulation study including a sensitivity analysis, the new alogorithm imputeRobust shows excellent performance compared with other common methods. Effectiveness was demonstrated by measures of precision for the prediction error, the coverage rates, and the mean square errors of the estimators, as well as by visual comparisons.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Gold
Lizenz
'https://creativecommons.org/licenses/by/4.0/'
Zitation
TEMPL, Matthias, 2023. Enhancing precision in large-scale data analysis: an innovative robust imputation algorithm for managing outliers and missing values. Mathematics. 2023. Bd. 11, Nr. 12. DOI 10.3390/math11122729. Verfügbar unter: https://doi.org/10.26041/fhnw-7443