Offline signature verification via structural methods: graph edit distance and inkball models

dc.contributor.authorMaergner, Paul
dc.contributor.authorHowe, Nicholas
dc.contributor.authorRiesen, Kaspar
dc.contributor.authorIngold, Rolf
dc.contributor.authorFischer, Andreas
dc.date.accessioned2024-04-17T12:54:46Z
dc.date.available2024-04-17T12:54:46Z
dc.date.issued2018
dc.description.abstractFor handwritten signature verification, signature images are typically represented with fixed-sized feature vectors capturing local and global properties of the handwriting. Graphbased representations offer a promising alternative, as they are flexible in size and model the global structure of the handwriting. However, they are only rarely used for signature verification, which may be due to the high computational complexity involved when matching two graphs. In this paper, we take a closer look at two recently presented structural methods for handwriting analysis, for which efficient matching methods are available: keypoint graphs with approximate graph edit distance and inkball models. Inkball models, in particular, have never been used for signature verification before. We investigate both approaches individually and propose a combined verification system, which demonstrates an excellent performance on the MCYT and GPDS benchmark data sets when compared with the state of the art.
dc.event16th International Conference on Frontiers in Handwriting Recognition
dc.event.end2018-08-08
dc.event.start2018-08-05
dc.identifier.doi10.1109/ICFHR-2018.2018.00037
dc.identifier.isbn978-1-5386-5875-8
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42435
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofICFHR2018. 2018 16th International Conference on Frontiers in Handwriting Recognition. Niagara Falls, New York, USA, 5-8 August 2018. Proceedings
dc.spatialNew York
dc.subject.ddc330 - Wirtschaft
dc.titleOffline signature verification via structural methods: graph edit distance and inkball models
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination163-168
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublicatione83eff11-b557-4fff-985e-1bbb1fd15e0c
relation.isAuthorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: