Machine learning detects anti-DENV signatures in antibody repertoire sequences

dc.accessRightsAnonymous*
dc.contributor.authorHorst, Alexander
dc.contributor.authorSmakaj, Erand
dc.contributor.authorNatali, Eriberto
dc.contributor.authorTosoni, Deniz David
dc.contributor.authorBabrak, Lmar
dc.contributor.authorMeier, Patrick
dc.contributor.authorMiho, Enkelejda
dc.date.accessioned2022-03-28T12:04:05Z
dc.date.available2022-03-28T12:04:05Z
dc.date.issued2021-10-11
dc.description.abstractDengue infection is a global threat. As of today, there is no universal dengue fever treatment or vaccines unreservedly recommended by the World Health Organization. The investigation of the specific immune response to dengue virus would support antibody discovery as therapeutics for passive immunization and vaccine design. High-throughput sequencing enables the identification of the multitude of antibodies elicited in response to dengue infection at the sequence level. Artificial intelligence can mine the complex data generated and has the potential to uncover patterns in entire antibody repertoires and detect signatures distinctive of single virus-binding antibodies. However, these machine learning have not been harnessed to determine the immune response to dengue virus. In order to enable the application of machine learning, we have benchmarked existing methods for encoding biological and chemical knowledge as inputs and have investigated novel encoding techniques. We have applied different machine learning methods such as neural networks, random forests, and support vector machines and have investigated the parameter space to determine best performing algorithms for the detection and prediction of antibody patterns at the repertoire and antibody sequence levels in dengue-infected individuals. Our results show that immune response signatures to dengue are detectable both at the antibody repertoire and at the antibody sequence levels. By combining machine learning with phylogenies and network analysis, we generated novel sequences that present dengue-binding specific signatures. These results might aid further antibody discovery and support vaccine design.en_US
dc.identifier.doi10.3389/frai.2021.715462
dc.identifier.issn2624-8212
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33408
dc.identifier.urihttps://doi.org/10.26041/fhnw-4151
dc.language.isoen_USen_US
dc.publisherFrontiersen_US
dc.relation.ispartofFrontiers in Artificial Intelligenceen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/en_US
dc.titleMachine learning detects anti-DENV signatures in antibody repertoire sequencesen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume4en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication915cbabb-a831-48c3-badf-1e2d66187b59
relation.isAuthorOfPublicationdef46f12-37a6-4c85-bba6-e2a63f9fb4b2
relation.isAuthorOfPublicationbe1cd53a-af25-4aaf-b646-af4c10f023aa
relation.isAuthorOfPublication05c03d68-06db-4815-9086-b9b3657d2d0c
relation.isAuthorOfPublication360cb962-ef17-4d00-a10d-79c3bde2a8d8
relation.isAuthorOfPublication30aa6b4f-8d02-4f33-8551-6261e7383b23
relation.isAuthorOfPublication.latestForDiscovery05c03d68-06db-4815-9086-b9b3657d2d0c
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
frai-04-715462.pdf
Größe:
2.89 MB
Format:
Adobe Portable Document Format
Beschreibung: