Outdoor mobile mapping and AI-based 3D object detection with low-cost RGB-D cameras. The use case of on-street parking statistics

dc.contributor.authorNebiker, Stephan
dc.contributor.authorMeyer, Jonas
dc.contributor.authorBlaser, Stefan
dc.contributor.authorAmmann, Manuela
dc.contributor.authorRhyner, Severin Eric
dc.date.accessioned2024-07-15T12:19:02Z
dc.date.available2024-07-15T12:19:02Z
dc.date.issued2021
dc.description.abstractA successful application of low-cost 3D cameras in combination with artificial intelligence (AI)-based 3D object detection algorithms to outdoor mobile mapping would offer great potential for numerous mapping, asset inventory, and change detection tasks in the context of smart cities. This paper presents a mobile mapping system mounted on an electric tricycle and a procedure for creating on-street parking statistics, which allow government agencies and policy makers to verify and adjust parking policies in different city districts. Our method combines georeferenced red-green-blue-depth (RGB-D) imagery from two low-cost 3D cameras with state-of-the-art 3D object detection algorithms for extracting and mapping parked vehicles. Our investigations demonstrate the suitability of the latest generation of low-cost 3D cameras for real-world outdoor applications with respect to supported ranges, depth measurement accuracy, and robustness under varying lighting conditions. In an evaluation of suitable algorithms for detecting vehicles in the noisy and often incomplete 3D point clouds from RGB-D cameras, the 3D object detection network PointRCNN, which extends region-based convolutional neural networks (R-CNNs) to 3D point clouds, clearly outperformed all other candidates. The results of a mapping mission with 313 parking spaces show that our method is capable of reliably detecting parked cars with a precision of 100% and a recall of 97%. It can be applied to unslotted and slotted parking and different parking types including parallel, perpendicular, and angle parking.
dc.identifier.doi10.3390/rs13163099
dc.identifier.issn2072-4292
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46381
dc.identifier.urihttps://doi.org/10.26041/fhnw-9485
dc.issue16
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofRemote sensing
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectParking statistics
dc.subjectVehicel detection
dc.subjectMobile mapping
dc.subjectRobot operating system
dc.subject3D camera
dc.subjectRGB-D
dc.subjectPerformance evaluation
dc.subjectConvolutional neural networks
dc.subjectSmart city
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleOutdoor mobile mapping and AI-based 3D object detection with low-cost RGB-D cameras. The use case of on-street parking statistics
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume13
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Architektur, Bau und Geomatik FHNWde_CH
fhnw.affiliation.institutInstitut Geomatikde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd4405bdc-e966-4962-9c93-9b06879a4a41
relation.isAuthorOfPublicationfbeb87dd-a384-4d52-bbd9-f84a6b5c48ed
relation.isAuthorOfPublication31874ac5-8697-4f30-bd52-b8650e323944
relation.isAuthorOfPublication08cd4a95-4489-4b8d-8131-9d82a2066935
relation.isAuthorOfPublicationf2197047-891d-4c4f-9ce4-536c1a643bf6
relation.isAuthorOfPublication.latestForDiscoveryd4405bdc-e966-4962-9c93-9b06879a4a41
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
remotesensing-13-03099-v2.pdf
Größe:
5.67 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: