Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface

dc.contributor.authorFerguson, Stephen J.
dc.contributor.authorBroggini, Nina
dc.contributor.authorWieland, Marco
dc.contributor.authorde Wild, Michael
dc.contributor.authorRupp, Frank
dc.contributor.authorGeis-Gerstorfer, Jürgen
dc.contributor.authorCochran, David L.
dc.contributor.authorBuser, Daniel
dc.date.accessioned2024-05-23T08:12:53Z
dc.date.available2024-05-23T08:12:53Z
dc.date.issued2006-06
dc.description.abstractThe functional capacity of osseointegrated dental implants to bear load is largely dependent on the quality of the interface between the bone and implant. Sandblasted and acid-etched (SLA) surfaces have been previously shown to enhance bone apposition. In this study, the SLA has been compared with a chemically modified SLA (modSLA) surface. The increased wettability of the modSLA surface in a protein solution was verified by dynamic contact angle analysis. Using a well-established animal model with a splitmouth experimental design, implant removal torque testing was performed to determine the biomechanical properties of the bone-implant interface. All implants had an identical cylindrical shape with a standard thread configuration. Removal torque testing was performed after 2, 4, and 8 weeks of bone healing (n = 9 animals per healing period, three implants per surface type per animal) to evaluate the interfacial shear strength of each surface type. Results showed that the modSLA surface was more effective in enhancing the interfacial shear strength of implants in comparison with the conventional SLA surface during early stages of bone healing. Removal torque values of the modSLA-surfaced implants were 8-21% higher than those of the SLA implants (p = 0.003). The mean removal torque values for the modSLA implants were 1.485 N m at 2 weeks, 1.709 N m at 4 weeks, and 1.345 N m at 8 weeks; and correspondingly, 1.231 N m, 1.585 N m, and 1.143 N m for the SLA implants. The bone-implant interfacial stiffness calculated from the torque-rotation curve was on average 9-14% higher for the modSLA implants when compared with the SLA implants (p = 0.038). It can be concluded that the modSLA surface achieves a better bone anchorage during early stages of bone healing than the SLA surface; chemical modification of the standard SLA surface likely enhances bone apposition and this has a beneficial effect on the interfacial shear strength.
dc.identifier.doi10.1002/jbm.a.30678
dc.identifier.issn1552-4965
dc.identifier.issn1549-3296
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/45803
dc.issue2
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofJournal of Biomedical Materials Research Part A
dc.subjectBiomechanical testing
dc.subjectDental implant
dc.subjectInterface
dc.subjectOsseointegration
dc.subjectSurface chemistry
dc.subjectWettability
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleBiomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume78A
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination291 - 297
fhnw.publicationStatePublished
relation.isAuthorOfPublication135938a9-969d-4ea3-9bb2-7ff1d77554cb
relation.isAuthorOfPublication.latestForDiscovery135938a9-969d-4ea3-9bb2-7ff1d77554cb
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: