Advancing algorithmic drug product development. Recommendations for machine learning approaches in drug formulation

dc.contributor.authorMurray, Jack D.
dc.contributor.authorLange, Justus J.
dc.contributor.authorBennett-Lenane, Harriet
dc.contributor.authorHolm, René
dc.contributor.authorKuentz, Martin
dc.contributor.authorO'Dwyer, Patrick J.
dc.contributor.authorGriffin, Brendan T.
dc.date.accessioned2024-02-08T09:38:32Z
dc.date.available2024-02-08T09:38:32Z
dc.date.issued2023
dc.description.abstractArtificial intelligence is a rapidly expanding area of research, with the disruptive potential to transform traditional approaches in the pharmaceutical industry, from drug discovery and development to clinical practice. Machine learning, a subfield of artificial intelligence, has fundamentally transformed in silico modelling and has the capacity to streamline clinical translation. This paper reviews data-driven modelling methodologies with a focus on drug formulation development. Despite recent advances, there is limited modelling guidance specific to drug product development and a trend towards suboptimal modelling practices, resulting in models that may not give reliable predictions in practice. There is an overwhelming focus on benchtop experimental outcomes obtained for a specific modelling aim, leaving the capabilities of data scraping or the use of combined modelling approaches yet to be fully explored. Moreover, the preference for high accuracy can lead to a reliance on black box methods over interpretable models. This further limits the widespread adoption of machine learning as black boxes yield models that cannot be easily understood for the purposes of enhancing product performance. In this review, recommendations for conducting machine learning research for drug product development to ensure trustworthiness, transparency, and reliability of the models produced are presented. Finally, possible future directions on how research in this area might develop are discussed to aim for models that provide useful and robust guidance to formulators. © 2023
dc.identifier.doi10.1016/j.ejps.2023.106562
dc.identifier.issn0928-0987
dc.identifier.issn1879-0720
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43991
dc.identifier.urihttps://doi.org/10.26041/fhnw-7895
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofEuropean Journal of Pharmaceutical Sciences
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectArtificial intelligence
dc.subjectComputational pharmaceutics
dc.subjectData-driven modelling
dc.subjectDrug formulation
dc.subjectProperty prediction
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleAdvancing algorithmic drug product development. Recommendations for machine learning approaches in drug formulation
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume191
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciencesde_CH
fhnw.affiliation.institutInstitut für Pharma Technologyde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublication68819448-8611-488b-87bc-1b1cf9a6a1b4
relation.isAuthorOfPublication.latestForDiscovery68819448-8611-488b-87bc-1b1cf9a6a1b4
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
1-s2.0-S0928098723001926-main.pdf
Größe:
1.14 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: