Improving bipartite graph edit distance approximation using various search strategies

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorRiesen, Kaspar
dc.contributor.authorBunke, Horst
dc.date.accessioned2015-10-08T13:31:11Z
dc.date.available2015-10-08T13:31:11Z
dc.date.issued2015-04
dc.description.abstractRecently the authors of the present paper introduced an approximation framework for the graph edit distance problem. The basic idea of this approximation is to first build a square cost matrix C=(cij)C=(cij), where each entry cij reflects the cost of a node substitution, deletion or insertion plus the matching cost arising from the local edge structure. Based on C an optimal assignment of the nodes and their local structure can be established in polynomial time. Since this approach considers local – rather than the global – structural properties of the graphs only, the graph edit distance derived from the optimal node assignment generally overestimates the true edit distance. The present paper pursues the idea of applying additional search strategies that build upon the initial assignment in order to reduce this overestimation. To this end, six different search strategies are investigated in this paper. In an exhaustive experimental evaluation on five real world graph data sets we empirically verify a substantial gain of distance accuracy by means of all search methods while run time remains remarkably low. Keywords Bipartite graph matching; Approximate graph edit distance
dc.identifier.issn0031-3203
dc.identifier.issn1873-5142
dc.identifier.urihttp://hdl.handle.net/11654/10166
dc.issue4
dc.language.isoen
dc.relation.ispartofPattern Recognitionen_US
dc.subjectBipartite graph matchingen_US
dc.subjectapproximate graph edit distanceen_US
dc.titleImproving bipartite graph edit distance approximation using various search strategies
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume48
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.94 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: