How to support customer segmentation with useful cluster descriptions

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorWitschel, Hans Friedrich
dc.contributor.authorLoo, Simon
dc.contributor.authorRiesen, Kaspar
dc.contributor.editorPerner, Petra
dc.date.accessioned2024-12-09T06:24:48Z
dc.date.available2017-10-27T11:05:36Z
dc.date.available2024-12-09T06:24:48Z
dc.date.issued2015
dc.description.abstractCustomer or market segmentation is an important instrument for the optimisation of marketing strategies and product portfolios. Clustering is a popular data mining technique used to support such segmentation – it groups customers into segments that share certain demographic or behavioural characteristics. In this research, we explore several automatic approaches which support an important task that starts after the actual clustering, namely capturing and labeling the “essence” of segments. We conducted an empirical study by implementing several of these approaches, applying them to a data set of customer representations and studying the way our study participants interacted with the resulting cluster representations. Major goal of the present paper is to find out which approaches exhibit the greatest ease of understanding on the one hand and which of them lead to the most correct interpretation of cluster essence on the other hand. Our results indicate that using a learned decision tree model as a cluster representation provides both good ease of understanding and correctness of drawn conclusions.
dc.event15th Industrial Conference, ICDM 2015
dc.event.end2015-07-24
dc.event.start2015-07-11
dc.identifier.isbn978-3-319-20910-4
dc.identifier.isbn978-3-319-20909-8
dc.identifier.isbn10.1007/978-3-319-20910-4_2
dc.identifier.urihttps://doi.org/10.26041/fhnw-58
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/49411
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofAdvances in data mining. Applications and theoretical aspects
dc.relation.ispartofseriesLecture Notes in Artificial Intelligence
dc.spatialCham
dc.subject.ddc004 - Computer Wissenschaften, Internet
dc.subject.ddc330 - Wirtschaft
dc.titleHow to support customer segmentation with useful cluster descriptions
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination17-31
fhnw.publicationStatePublished
fhnw.seriesNumber9165
relation.isAuthorOfPublication4f94a17c-9d05-433c-882f-68f062e0e6ae
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublication.latestForDiscovery4f94a17c-9d05-433c-882f-68f062e0e6ae
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
07 icdm15.pdf
Größe:
567.04 KB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.94 KB
Format:
Item-specific license agreed upon to submission
Beschreibung:

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2024-12-06 12:24:10
diverse Metadatenkorrekturen
2015-10-08 13:36:08
* Ausgewählte Version