Performance Prediction System for University Course Selection

dc.contributor.authorMäder, David
dc.contributor.mentorSpahic, Maja
dc.contributor.mentorWitschel, Hans Friedrich
dc.date.accessioned2024-12-03T19:23:41Z
dc.date.available2024-12-03T19:23:41Z
dc.date.issued2023
dc.description.abstractDue to the limited availability of human academic advisors, and the high demand for academic advising by students, students’ needs are not satisfied. In a digital world, collecting data has become increasingly important. Algorithms can be used for analysing data and building predictive models. More and more industries are using recommender systems to improve their services and personalize recommendations to satisfy every customer’s need better. Compared to humans, algorithms can also consider implicit data, which refers to information that is not explicitly stated but can be deducted from available data.
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48847
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialOlten
dc.subject.ddc330 - Wirtschaft
dc.titlePerformance Prediction System for University Course Selection
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.StudentsWorkTypeMaster
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutMaster of Science
relation.isMentorOfPublication144d0d2c-04cb-4367-8007-a819fd7de012
relation.isMentorOfPublication4f94a17c-9d05-433c-882f-68f062e0e6ae
relation.isMentorOfPublication.latestForDiscovery144d0d2c-04cb-4367-8007-a819fd7de012
Dateien