Machine Estimation of Drug Melting Properties and Influence on Solubility Prediction

dc.accessRightsAnonymous*
dc.audienceScienceen_US
dc.contributor.authorWyttenbach, Nicole
dc.contributor.authorNiederquell, Andreas
dc.contributor.authorKuentz, Martin
dc.date.accessioned2021-05-10T11:37:41Z
dc.date.available2021-05-10T11:37:41Z
dc.date.issued2020-06-04
dc.description.abstractThere has been much recent interest in machine learning (ML) and molecular quantitative structure property relationships (QSPR). The present research evaluated modern ML-based methods implemented in commercial software (COSMOquick and Molecular Modeling Pro), compared to a classical group contribution approach (Joback and Reid method), to estimate melting points and enthalpy of fusion values. A broad data set of market compounds was gathered from the literature, together with new data measured by differential scanning calorimetry for drug candidates. The highest prediction accuracy was achieved by QSPR using stochastic gradient boosting. The model deviations were discussed, particularly the implications on thermodynamic solubility modeling, as this typically requires estimation of both melting point and enthalpy of fusion. The results suggested that despite considerable advancement in prediction accuracy, there are still limitations especially with complex drug candidates. It is recommended that in such cases, melting properties obtained in silico should be used carefully as input data for thermodynamic solubility modeling. Future research will show how the prediction limits of thermophysical drug properties can be further advanced by even larger data sets and other ML algorithms or also by using molecular simulations.en_US
dc.identifier.doi10.1021/acs.molpharmaceut.0c00355
dc.identifier.issn1543-8384
dc.identifier.issn1543-8392
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/32432
dc.issue7en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.ispartofMolecular Pharmaceuticsen_US
dc.subjectquantitative structure property relationshipen_US
dc.subjectmachine learningen_US
dc.subjectenthalpy of fusionen_US
dc.subjectmelting pointen_US
dc.subjectdrugen_US
dc.titleMachine Estimation of Drug Melting Properties and Influence on Solubility Predictionen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume17en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.PublishedSwitzerlandYesen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Pharma Technologyde_CH
fhnw.pagination2660-2671en_US
fhnw.publicationOnlineJaen_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication06a3358a-d47d-4c9a-8527-ca95e717ed66
relation.isAuthorOfPublication68819448-8611-488b-87bc-1b1cf9a6a1b4
relation.isAuthorOfPublication.latestForDiscovery68819448-8611-488b-87bc-1b1cf9a6a1b4
Dateien