In silico proof of principle of machine learning-based antibody design at unconstrained scale

dc.contributor.authorAkbar, Rahmad
dc.contributor.authorRobert, Philippe A.
dc.contributor.authorWeber, Cédric R.
dc.contributor.authorWidrich, Michael
dc.contributor.authorFrank, Robert
dc.contributor.authorPavlović, Milena
dc.contributor.authorScheffer, Lonneke
dc.contributor.authorChernigovskaya, Maria
dc.contributor.authorSnapkov, Igor
dc.contributor.authorSlabodkin, Andrei
dc.contributor.authorMehta, Brij Bhushan
dc.contributor.authorMiho, Enkelejda
dc.contributor.authorLund-Johansen, Fridtjof
dc.contributor.authorAndersen, Jan Terje
dc.contributor.authorHochreiter, Sepp
dc.contributor.authorHobæk Haff, Ingrid
dc.contributor.authorKlambauer, Günter
dc.contributor.authorSandve, Geir Kjetil
dc.contributor.authorGreiff, Victor
dc.date.accessioned2024-08-16T08:59:19Z
dc.date.available2024-08-16T08:59:19Z
dc.date.issued2022-04-04
dc.description.abstractGenerative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.
dc.identifier.doi10.1080/19420862.2022.2031482
dc.identifier.issn1942-0862
dc.identifier.issn1942-0870
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46928
dc.identifier.urihttps://doi.org/10.26041/fhnw-9953
dc.issue1
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.ispartofmAbs
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectGenerative machine learning
dc.subjectAntibody design
dc.subjectParatope
dc.subjectEpitope
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleIn silico proof of principle of machine learning-based antibody design at unconstrained scale
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume14
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciencesde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublication30aa6b4f-8d02-4f33-8551-6261e7383b23
relation.isAuthorOfPublication3d39049f-ff63-4e50-949b-ee67f7dcb763
relation.isAuthorOfPublication.latestForDiscovery3d39049f-ff63-4e50-949b-ee67f7dcb763
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
In silico proof of principle of machine learning-based antibody design at unconstrained scale.pdf
Größe:
29.77 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: