In silico proof of principle of machine learning-based antibody design at unconstrained scale
dc.contributor.author | Akbar, Rahmad | |
dc.contributor.author | Robert, Philippe A. | |
dc.contributor.author | Weber, Cédric R. | |
dc.contributor.author | Widrich, Michael | |
dc.contributor.author | Frank, Robert | |
dc.contributor.author | Pavlović, Milena | |
dc.contributor.author | Scheffer, Lonneke | |
dc.contributor.author | Chernigovskaya, Maria | |
dc.contributor.author | Snapkov, Igor | |
dc.contributor.author | Slabodkin, Andrei | |
dc.contributor.author | Mehta, Brij Bhushan | |
dc.contributor.author | Miho, Enkelejda | |
dc.contributor.author | Lund-Johansen, Fridtjof | |
dc.contributor.author | Andersen, Jan Terje | |
dc.contributor.author | Hochreiter, Sepp | |
dc.contributor.author | Hobæk Haff, Ingrid | |
dc.contributor.author | Klambauer, Günter | |
dc.contributor.author | Sandve, Geir Kjetil | |
dc.contributor.author | Greiff, Victor | |
dc.date.accessioned | 2024-08-16T08:59:19Z | |
dc.date.available | 2024-08-16T08:59:19Z | |
dc.date.issued | 2022-04-04 | |
dc.description.abstract | Generative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design. | |
dc.identifier.doi | 10.1080/19420862.2022.2031482 | |
dc.identifier.issn | 1942-0862 | |
dc.identifier.issn | 1942-0870 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/46928 | |
dc.identifier.uri | https://doi.org/10.26041/fhnw-9953 | |
dc.issue | 1 | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis | |
dc.relation.ispartof | mAbs | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject | Generative machine learning | |
dc.subject | Antibody design | |
dc.subject | Paratope | |
dc.subject | Epitope | |
dc.subject.ddc | 600 - Technik, Medizin, angewandte Wissenschaften | |
dc.title | In silico proof of principle of machine learning-based antibody design at unconstrained scale | |
dc.type | 01A - Beitrag in wissenschaftlicher Zeitschrift | |
dc.volume | 14 | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Life Sciences FHNW | de_CH |
fhnw.affiliation.institut | Institut für Medizintechnik und Medizininformatik | de_CH |
fhnw.openAccessCategory | Gold | |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | 30aa6b4f-8d02-4f33-8551-6261e7383b23 | |
relation.isAuthorOfPublication | 3d39049f-ff63-4e50-949b-ee67f7dcb763 | |
relation.isAuthorOfPublication.latestForDiscovery | 3d39049f-ff63-4e50-949b-ee67f7dcb763 |
Dateien
Originalbündel
1 - 1 von 1
- Name:
- In silico proof of principle of machine learning-based antibody design at unconstrained scale.pdf
- Größe:
- 29.77 MB
- Format:
- Adobe Portable Document Format
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 2.66 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: