Onset detection of pulse-shaped bioelectrical signals using linear state space models

dc.accessRightsAnonymous*
dc.contributor.authorWaldmann, Frédéric
dc.contributor.authorBaeriswyl, Christof
dc.contributor.authorAndonie, Raphael
dc.contributor.authorWildhaber, Reto
dc.date.accessioned2023-02-16T13:19:08Z
dc.date.available2023-02-16T13:19:08Z
dc.date.issued2022-09-02
dc.description.abstractBioelectrical signals are often pulse-shaped with superimposed interference signals. In this context, accurate identification of features such as pulse onsets, peaks, amplitudes, and duration is a frequent problem. In this paper, we present a versatile method of rather low computational complexity to robustly identify such features in real-world signals. For that, we take use of two straight-line models fit to the observations by minimizing a quadratic cost term, and then identify desired features by tweaked likelihood measures. To demonstrate the idea and facilitate access to the method, we provide examples from the field of cardiology.en_US
dc.identifier.doi10.1515/cdbme-2022-1027
dc.identifier.issn2364-5504
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/34632
dc.identifier.urihttps://doi.org/10.26041/fhnw-4645
dc.issue2en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofCurrent Directions in Biomedical Engineeringen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectLinear state space modelsen_US
dc.subjectRecursive least squaresen_US
dc.subjectLikelihooden_US
dc.subjectFeature extractionen_US
dc.subjectOnset detectionen_US
dc.subjectEcg wavesen_US
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaftenen_US
dc.titleOnset detection of pulse-shaped bioelectrical signals using linear state space modelsen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume8en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciencesde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.pagination101-104en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication83c99bf4-07c1-4188-9d4c-09f921eee746
relation.isAuthorOfPublication66894b38-407a-46f1-9e66-f573a64bf357
relation.isAuthorOfPublication.latestForDiscovery83c99bf4-07c1-4188-9d4c-09f921eee746
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
10.1515_cdbme-2022-1027.pdf
Größe:
1.17 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: