Building Expert Recommenders from Email-Based Personal Social Networks

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.editorRivera-Pelayo, Veronica
dc.contributor.editorBraun, Simone
dc.contributor.editorRiss, Uwe V.
dc.contributor.editorWitschel, Hans Friedrich
dc.contributor.editorHu, Bo
dc.date.accessioned2015-09-29T07:30:41Z
dc.date.available2017-10-27T10:49:28Z
dc.date.issued2013
dc.description.abstractIn modern organisations there is the necessity to collaborate with people and establish interpersonal relationships. Contacting the right person is crucial for the success of the performed daily tasks. Personal email corpora contain rich information about all the people the user knows and their activities. Thus, an analysis of a person's emails allows automatically constructing a realistic image of the surroundings of that person. This chapter aims to develop ExpertSN, a personalised Expert Recommender tool based on email Data Mining and Social Network Analysis.
dc.identifier.urihttp://hdl.handle.net/11654/5144
dc.identifier.urihttps://doi.org/10.26041/fhnw-2800
dc.language.isoen
dc.publisherSpringer
dc.spatialBerlin
dc.subjectEgocentric Social Networksen_US
dc.subjectExpert Searchen_US
dc.subjectSocial Networken_US
dc.titleBuilding Expert Recommenders from Email-Based Personal Social Networks
dc.type03 - Sammelband
dc.volume6
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.publicationStatePublished
relation.isEditorOfPublication4f94a17c-9d05-433c-882f-68f062e0e6ae
relation.isEditorOfPublication.latestForDiscovery4f94a17c-9d05-433c-882f-68f062e0e6ae
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
10 expertsn.pdf
Größe:
969.87 KB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.94 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: