Building Expert Recommenders from Email-Based Personal Social Networks
dc.accessRights | Anonymous | |
dc.audience | Science | |
dc.contributor.editor | Rivera-Pelayo, Veronica | |
dc.contributor.editor | Braun, Simone | |
dc.contributor.editor | Riss, Uwe V. | |
dc.contributor.editor | Witschel, Hans Friedrich | |
dc.contributor.editor | Hu, Bo | |
dc.date.accessioned | 2015-09-29T07:30:41Z | |
dc.date.available | 2017-10-27T10:49:28Z | |
dc.date.issued | 2013 | |
dc.description.abstract | In modern organisations there is the necessity to collaborate with people and establish interpersonal relationships. Contacting the right person is crucial for the success of the performed daily tasks. Personal email corpora contain rich information about all the people the user knows and their activities. Thus, an analysis of a person's emails allows automatically constructing a realistic image of the surroundings of that person. This chapter aims to develop ExpertSN, a personalised Expert Recommender tool based on email Data Mining and Social Network Analysis. | |
dc.identifier.uri | http://hdl.handle.net/11654/5144 | |
dc.identifier.uri | https://doi.org/10.26041/fhnw-2800 | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.spatial | Berlin | |
dc.subject | Egocentric Social Networks | en_US |
dc.subject | Expert Search | en_US |
dc.subject | Social Network | en_US |
dc.title | Building Expert Recommenders from Email-Based Personal Social Networks | |
dc.type | 03 - Sammelband | |
dc.volume | 6 | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.IsStudentsWork | no | |
fhnw.PublishedSwitzerland | No | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
fhnw.publicationState | Published | |
relation.isEditorOfPublication | 4f94a17c-9d05-433c-882f-68f062e0e6ae | |
relation.isEditorOfPublication.latestForDiscovery | 4f94a17c-9d05-433c-882f-68f062e0e6ae |
Dateien
Originalbündel
1 - 1 von 1
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 2.94 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: