RAG-Assisted Knowledge Graph Construction for Course Recommendation System

dc.contributor.authorYaman, Ibrahim
dc.contributor.mentorPustulka, Elzbieta
dc.contributor.mentorFornari, Fabrizio
dc.date.accessioned2025-12-15T13:40:19Z
dc.date.issued2025
dc.description.abstractThe study was conducted under a Design Science Research (DSR) methodology to develop a scalable foundation for AI-driven, skill-based course recommendation. For each education program, the taught skills were automatically derived by configuring a Retrieval-Augmented Generation (RAG) pipeline with GPT-4 and grounding it in program descriptions. The generated skills were modeled as nodes and, together with the corresponding program entities, were loaded into a graph database (Neo4j), thereby instantiating a sustainable, domain-specific Knowledge Graph (KG).
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54881
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialOlten
dc.subject.ddc330 - Wirtschaft
dc.titleRAG-Assisted Knowledge Graph Construction for Course Recommendation System
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.StudentsWorkTypeMaster
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutMaster of Sciencede_CH
relation.isMentorOfPublication3e7f2a0a-692e-4652-b305-7a7e19e011de
relation.isMentorOfPublication2c6211f2-904f-4c1c-b3f1-f84c8cb08def
relation.isMentorOfPublication.latestForDiscovery3e7f2a0a-692e-4652-b305-7a7e19e011de
Files