Managing Cognitive Biases in LLMs Utilization

dc.contributor.authorNguyen, Ngoc Bao
dc.contributor.mentorSchlick, Sandra
dc.date.accessioned2025-07-09T12:45:06Z
dc.date.issued2025
dc.description.abstractThis thesis investigates the challenges posed by cognitive biases in the utilization of Large Language Models (LLMs) within the pharmaceutical industry and proposes strategies to mitigate these biases using educational tools aligned with the "Anxious" aspect of the BANI framework. Cognitive biases such as confirmation bias, automation bias, loss aversion, and fear of missing out can significantly impact decision-making, document trustworthiness, and productivity when employees rely on LLMs for generating documents.
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/52037
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialOlten
dc.subject.ddc330 - Wirtschaft
dc.titleManaging Cognitive Biases in LLMs Utilization
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.StudentsWorkTypeMaster
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutMaster of Sciencede_CH
relation.isMentorOfPublication038b519d-0e7a-49cf-bae9-55884d6a25d3
relation.isMentorOfPublication.latestForDiscovery038b519d-0e7a-49cf-bae9-55884d6a25d3
Dateien