Ensemble-based machine learning for predicting sudden human fall using health data

dc.contributor.authorSaxena, Utkarsh
dc.contributor.authorMoulik, Soumen
dc.contributor.authorNayak, Soumya Ranjan
dc.contributor.authorHanne, Thomas
dc.contributor.authorRoy, Diptendu Sinha
dc.date.accessioned2024-03-18T12:46:08Z
dc.date.available2024-03-18T12:46:08Z
dc.date.issued2021
dc.description.abstractWe attempt to predict the accidental fall of human beings due to sudden abnormal changes in their health parameters such as blood pressure, heart rate, and sugar level. In medical terminology, this problem is known as Syncope. The primary motivation is to prevent such falls by predicting abnormal changes in these health parameters that might trigger a sudden fall. We apply various machine learning algorithms such as logistic regression, a decision tree classifier, a random forest classifier, K-Nearest Neighbours (KNN), a support vector machine, and a naive Bayes classifier on a relevant dataset and verify our results with the cross-validation method. We observe that the KNN algorithm provides the best accuracy in predicting such a fall. However, the accuracy results of some other algorithms are also very close. Thus, we move one step further and propose an ensemble model, Majority Voting, which aggregates the prediction results of multiple machine learning algorithms and finally indicates the probability of a fall that corresponds to a particular human being. The proposed ensemble algorithm yields 87.42% accuracy, which is greater than the accuracy provided by the KNN algorithm.
dc.identifier.doi10.1155/2021/8608630
dc.identifier.issn1563-5147
dc.identifier.issn1024-123X
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43146
dc.identifier.urihttps://doi.org/10.26041/fhnw-7111
dc.language.isoen
dc.publisherHindawi
dc.relation.ispartofMathematical Problems in Engineering
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc330 - Wirtschaft
dc.titleEnsemble-based machine learning for predicting sudden human fall using health data
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Ensemble-based_machine_learning_for_predicting_sudden_human_fall_using_health_data.pdf
Größe:
1.58 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: